首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this study is to analyze the effects of habitat loss and forest replacement by cattle pasture on the alpha and beta diversity, abundance, biomass and species composition of dung beetles with different dispersal ability. Dung beetles were captured in 19 forest fragments and neighbouring pastures. Forest fragment area ranged from 3.7 to 4825 ha and in this study were grouped into four categories: small, medium, large and control forest. A total of 35,048 dung beetles representing 101 species were collected. Forest fragments had the highest richness with 81 species, followed by pasture with 58 species. Replacement of forest by pasture reduced species richness; however, due to the proximity and connectivity of these areas with Cerrado patches, pastures also had high species richness, but species composition was independent of adjacent fragments. Small fragments had lower abundance and species richness than our other habitat categories, even pastures. Our results highlight that proximity and connectivity with Cerrado areas influenced the patterns of alpha and beta diversity of dung beetles in fragments and pastures. We highlight that the ability to cross the pasture matrix is a strong adaptive trait for species living in human-modified landscapes. Consequently, species with these abilities are less susceptible to the effects of forest fragmentation and local extinction. Our results reinforce the importance of considering the biogeographic location and distribution pattern of species in forest fragmentation studies.  相似文献   

2.
Orchid bees are important pollinators in tropical forests. Although studies have already detected effects of habitat loss and forest fragmentation on bee assemblages, little is known about orchid bees in urban forest fragments. The aim of this study was to analyse the influence of forest fragments (size and edge index) and landscape features (forest cover area and built-up area around the forest fragments, connectivity and spatial distance from the urban center) on the abundance, richness and composition of orchid bees. Male bees were attracted by odoriferous baits and collected in ten forest fragments of different sizes. In total, we collected 3166 male bees belonging to 4 genera and 38 species. The increase of the built-up area and the reduction of the forest cover area around the forest fragments decreased the abundance and richness of bees. We recorded a smaller number of bees in areas closer to the urban center. We failed to find a significant relationship between abundance/richness of bees and forest fragment area, edge index, and connectivity. We observed that the faunistic dissimilarity was positively correlated with the geographic distance between forest fragments. The forest fragments that presented greater landscape dissimilarity also presented greater faunistic dissimilarity. Our results suggest that the matrix structure around the forest fragments is an important factor that influences the Euglossini bee assemblages inside these forest fragments. Based on our results, we believed that the conservation of fragments with a larger forest cover area and smaller built-up areas around them contribute to the maintenance of the diversity of orchid bees and their pollination services.  相似文献   

3.
Å. Berg 《Bird Study》2013,60(3):355-366
This study investigated the importance of habitat quality and habitat heterogeneity for the abundance and diversity of breeding birds in continuous forest and in forest fragments surrounded by farmland in central Sweden. Positive correlations were found between species number and area, volume of Aspen Populus tremula and habitat heterogeneity. Spatial segregation of habitats at a relatively fine-grained scale is suggested to allow for the co-occurrence of more species. The abundance of at least 18 of the species in this study was influenced by fragmentation, and nine of these species preferred fragments to forest sites. The total density of birds was higher in fragments than in forest sites, probably because several fragment species forage in farmland surrounding the sites and a few also forage at edges. Nine species were more common in forest sites than in fragments, but only one species was restricted to continuous forest. However, several fragments were relatively close to forests (150 m) and forest was common in larger scale contexts. The abundance of most species (25 of 33 species) in this study was correlated with habitat quality variables (i.e. variables measuring the size, volume and diversity of ‘tree species’). Among these habitat variables the most important was the occurrence of deciduous trees which seemed to be important for 14 species. The second most important habitat factor seemed to be the diameter of trees, which was positively correlated with the abundance of eight species of which five are hole-nesters. Among coniferous trees, six species were positively correlated with the volume of Norway Spruce Picea abies, whereas no species seemed to be correlated with the volume of Pine Pinus sylvestris.  相似文献   

4.
The effect of isolation and the importance of dispersal in establishing and maintaining populations in fragments of remnant habitat remain poorly understood. Nevertheless, environmental connectivity is likely to be important for ensuring the long‐term preservation of biodiversity in extensively cleared landscapes. In this study, we compared reptile communities in large conservation parks with those in small woodland remnants 6.5–12 km from the parks, on the Eyre Peninsula, South Australia, Australia. We assessed the impact of fragmentation on the abundance, richness and habitat preferences of reptiles, and examined whether connection to linear roadside vegetation altered reptile communities in small woodland remnants. Of the 31 reptile species, 12 were restricted to conservation parks and six to habitat fragments in farmland. There was a substantial reduction in reptile species richness and abundance in farmland fragments. Direct connection of remnant vegetation to roadside corridors did not affect abundance of common species in the farmland fragments, although species richness was lower in isolated remnants in one of our two study regions. The habitat preference of the scincid lizard Menetia greyii differed between farmland fragments, where they were regularly found on dunes and roadsides, and conservation parks, where they were rare and not detected on dunes. We suggest that habitat fragmentation may have altered interspecific interactions, enabling an expansion of habitat use in the farming landscape. Significantly lower abundance of four common species in farmland settings compared with reserves indicated that existing corridors and small fragments provide inadequate connectivity over larger distances. To counter this effect, large reserves may need to be less than 10 km apart.  相似文献   

5.
As natural forest ecosystems increasingly face pressure from deforestation, it is ever more important to understand the impacts of habitat fragmentation and degradation on biodiversity. Most studies of anthropogenic change in the tropics come from Southeast Asia and South America, and impacts of habitat modification are often taxon‐specific. Here we empirically assessed the impact of habitat fragmentation and recent (within 25 yr) and historic (>25 yr ago) selective logging on the diversity of ants in the Kakamega rain forest in western Kenya, and asked whether these forms of degradation interact as multiple stressors. We found that the severity of recent selective logging was negatively related to overall species richness and abundance as well as the richness and abundance of forest specialists, but found no detrimental effect of past selective logging or habitat fragmentation on ant diversity, although habitat fragment size was correlated with estimated species richness. There was also no effect of any form of habitat degradation on the richness or abundance of open habitat specialists, even though these species often exploit niches created in disturbed environments. Ultimately, this study reveals the detrimental impact of even moderate forms of habitat degradation on insect biodiversity in the understudied African rain forests.  相似文献   

6.
The potential for parallel impacts of habitat change on multiple biodiversity levels has important conservation implications. We report on the first empirical test of the 'species-genetic diversity correlation' across co-distributed taxa with contrasting ecological traits in the context of habitat fragmentation. In a rainforest landscape undergoing conversion to oil palm, we show that depauperate species richness in fragments is mirrored by concomitant declines in population genetic diversity in the taxon predicted to be most susceptible to fragmentation. This association, not seen in the other species, relates to fragment area rather than isolation. While highlighting the over-simplification of extrapolating across taxa, we show that fragmentation presents a double jeopardy for some species. For these, conserving genetic diversity at levels of pristine forest could require sites 15-fold larger than those needed to safeguard species numbers. Importantly, however, each fragment contributes to regional species richness, with larger ones tending to contain more species.  相似文献   

7.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

8.
《Acta Oecologica》2004,25(1-2):93-101
Loss and fragmentation of habitat resulting from the clearing of forests for agriculture and urban development threaten the persistence of thousands of species worldwide. The clearing of native forest to plant a monoculture of exotic trees may also reduce and fragment the habitat available for indigenous plants and animals. Metacommunity theory suggests that the species richness of a community in a patch of habitat will increase with patch size but decrease with patch isolation. We investigated whether replacement of native Eucalyptus forest with a plantation of Pinus radiata has reduced and fragmented habitat for frogs, leading to a lower species richness of frog communities in the pine plantation and in small and/or isolated remnant patches of native forest. We surveyed frogs at 60 sites at streams and wetlands in the pine plantation, remnant patches of native forest surrounded by pines, and adjacent areas of contiguous native forest near Tumut in New South Wales, Australia. Only two of eight species of frogs were recorded in the pine plantation, and regression modelling indicated that streams and wetlands in the pines supported fewer frog species than those in remnant patches or the intact native forest. In addition, species richness tended to be higher at wide, shallow swamps and marshes near the headwaters of streams, with herbs, grasses, shrubs, reeds, sedges and rushes in the emergent and fringing vegetation. There was little evidence to suggest that larger eucalypt remnants supported more species of frogs, or that remnants isolated by greater expanses of pines supported fewer species, but we had low power to detect these effects with our data set. Our results support the preservation of all remnants of native forest along drainage lines and around swamps, soaks and bogs, regardless of size. Where new pine plantations are established, for example, on cleared agricultural land, care should be taken to maintain the structural and vegetative characteristics of water bodies to ensure that they continue to provide suitable breeding habitat for frogs.  相似文献   

9.
The majority of forests in urban areas are small and isolated. Improving habitat quality of small forests instead of increasing habitat size and connectivity could be an effective means of conserving the biodiversity of such highly fragmented landscapes. In this study, we investigated the relative importance of habitat quantity, quality and isolation on butterfly assemblages in urban fragmented forests in Tokyo, Japan. We used four habitat geographic parameters: (1) fragment size, (2) shape index, (3) isolation (distance to the mainland), and (4) connectivity; and three habitat quality parameters: (1) herbaceous nectar plant abundance, (2) herbaceous nectar plant diversity, and (3) larval host plant diversity. We surveyed butterfly assemblages along transects in 20 forest fragments that ranged in size from 1 to 122 ha. We used generalized linear models to relate the number of species in a fragment to four habitat geographic parameters and three habitat quality parameters. The averaged models based on AICc showed that fragment size had a strong positive effect on butterfly species richness. There was also a positive effect of herbaceous nectar plant abundance on species diversity. These findings suggest that improving the habitat quality of small and isolated forests in highly fragmented landscapes may be capable of maintaining levels of butterfly diversity comparable to those of large fragments.  相似文献   

10.
Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity.  相似文献   

11.
The traditional shade cacao plantations (cabrucas) of southern Bahia, Brazil, are biologically rich habitats, encompassing many forest-dwelling species. However, a critical question for the conservation management of this specific region, and the highly fragmented Atlantic forest in general, is to what extent the conservation value of cabrucas relies on the presence of primary forest habitat in the landscape. We investigated the relative importance of cabrucas and forests for the conservation of five diverse biological groups (ferns, frogs, lizards, birds and bats) in two contrasting landscapes in southern Bahia, one dominated by forest with some interspersed cabrucas, and one dominated by cabrucas with interspersed forest fragments. The community structure (richness, abundance and diversity) of all biological groups differed between cabrucas and forests, although these differences varied among groups. A high number of forest species was found in the cabrucas. However, there were pronounced differences between the two landscapes with regard to the ability of cabrucas to maintain species richness. Irrespective of the biological group considered, cabrucas located in the landscape with few and small forest fragments supported impoverished assemblages compared to cabrucas located in the landscape with high forest cover. This suggests that a greater extent of native forest in the landscape positively influences the species richness of cabrucas. In the landscape with few small forest fragments interspersed into extensive areas of shade cacao plantations, the beta diversity of birds was higher than in the more forested landscape, suggesting that forest specialist species that rarely ventured into cabrucas were randomly lost from the fragments. These results stress both the importance and the vulnerability of the small forest patches remaining in landscapes dominated by shade plantations. They also point to the need to preserve sufficient areas of primary habitat even in landscapes where land use practices are generally favorable to the conservation of biodiversity.  相似文献   

12.
We analyzed the abundance and diversity of Heteromyid and Murid rodents in the Lagos de Montebello National Park and adjacent areas, Chiapas, Mexico. We sampled three habitat types with different degrees of disturbance: pine-oak-liquidambar forest, ecotone and crop farming lands. Habitat types were defined considering characteristics such as heterogeneity, structural complexity and arboreal cover. We obtained ancillary habitat data considered important for small mammal requirements. Data on rodent communities were obtained by capture-mark-recapture between February and October 1996. We made 410 captures in 3820 trap-nights effort. Ten species were recorded, including one endemic with restricted distribution in Chiapas. Mouse diversity in the forest was significantly higher than within the farm lands. A Kendall correlation analysis showed positive relationship between rodent community species richness and habitat heterogeneity. Diversity of rodents was associated with the habitat complexity and structural elements, and negatively correlated with farming intensity. We found a high beta diversity and low similarity of the rodent communities in the three different habitats. Community composition strongly changed from the forest through the ecotone into the farm lands, with five species gained and seven species lost. The highest species richness was found in the ecotone; however, it showed a strong dominance of a single species that can convert into a plague of crops, and relatively low abundance of the other species. The pine-oak-liquidambar forest had the highest diversity indices, sheltering a particular rodent community within the study area, it therefore probably has the most important role in the conservation of the local biodiversity.  相似文献   

13.
Rampant deforestation has caused the loss and fragmentation of natural habitats, which has precipitated a global biodiversity crisis. Research on how land-use change contributes to a loss of biodiversity is urgently needed, especially in ecosystems that have undergone rapid anthropogenic changes. We sought to investigate the extent to which habitat loss, fragmentation, and habitat split (the separation of forest and aquatic habitats) negatively influenced taxonomic diversity, functional diversity, total abundance, and the individual abundances of five anuran species in the Brazilian Cerrado. We sampled anurans between December 2017 and March 2018 using pitfall traps at sites distributed along a gradient of habitat fragmentation/habitat split: unfragmented forest, forest fragments without habitat split, and forest fragments with habitat split. Forest cover was measured within a 1-km radius of each site. Sites within unfragmented forests had higher taxonomic and functional diversities than either fragment type. Taxonomic diversity was highly correlated with functional diversity, but we did not find a pattern to the loss of functional traits. Total anuran abundance and the abundances of Chiasmocleis albopunctata, Physalaemus cuvieri, and Rhinella diptycha were higher in unfragmented forests compared to forest fragments. No species was more abundant in fragments than in unfragmented forests. Our results indicate that the fragmentation of forests by agricultural land use is directly and indirectly responsible for the loss of taxonomic and functional diversity, as well as for reducing population sizes of ground-dwelling anurans. Although we did not find a distinct effect of habitat split on ground-dwelling anurans, our study underscores the importance of preserving continuous forest habitats for the maintenance of anuran diversity in the Cerrado.  相似文献   

14.
Several amphibian species have ecological traits that can make them vulnerable to landscape changes, such as habitat preference and reproductive strategies. We evaluated how anuran species and their respective reproductive modes were distributed in an Atlantic Forest fragmented landscape, Southeastern Brazil. We sampled through visual encounter surveys three continuous forest sites, 12 forest fragments and five pasture areas (matrix) between July 2007 and March 2010. We recorded 50 anuran species with 15 reproductive modes, a third of them (33.3%) recorded only in continuous forest sites (modes 3, 8, 19, 25 and 36). These reproductive modes found only in continuous forest sites are typically forest‐associated, and seem to be more vulnerable to habitat loss. Additionally, we found a trend for larger fragments to harbor both higher number of types of reproductive sites and diversity of frog reproductive modes. Our findings suggests that fragment sizes can better predict the number of frog reproductive modes than the species richness in Atlantic Forest fragmented landscapes, and highlights the need to consider frog reproductive traits in future studies.  相似文献   

15.
Habitat fragmentation reduces the available habitat area and increases both the distance between fragments and the amount of fragment edges. Therefore, there are more probabilities of plant population size reduction and species extinction. In the same way, biotic and abiotic changes associated with forest fragmentation can dramatically alter plant growth and phenological patterns. We conducted a 3-year study to analyze effects of habitat fragmentation and seasonal variation on host plant quality (quantity of leaves, diameter at breast height, tree height), gall abundance and species richness in a temperate oak forest. Our results show that host plant quality was significantly higher in isolated oaks and small fragments, increasing the abundance and species richness of oak gall wasp species in most fragmented habitats. Oak canopy cover is altered by forest fragmentation, there being higher production of leaves on trees that are more exposed to fragmentation, and can provide important resources for maintaining gall wasp species diversity in a fragmented landscape. We found higher gall wasp richness and abundance in autumn than in the spring, which matches with the higher quantity of leaves in this season.  相似文献   

16.
The Atlantic Forest (AF) is one of the five most threatened and megadiverse world hotspots. It is arguably the most devastated and highly threatened ecosystem on the planet. The vast scope of habitat loss and extreme fragmentation in the AF hotspots has left intact very few extensive and continuous forested fragments. We compared bird assemblages between small (<100 ha) and large (>6,000 ha) forest remnants, in one of the largest AF remnants in Argentina. We performed 84 point-counts of birds in four large fragments (LF) and 67 points in 25 small fragments (SF). We recorded 4,527 bird individuals belonging to 173 species; 2,632 belonging to 153 species in LF and 1,897 in 124 species in SF. Small fragments suffered a significant loss of bird richness, mainly forest dependent species, but the birds abundance did not decrease, due to an increase in abundance of forest independent and semi-dependent bird species (edge and non forest species) that benefit from forest fragmentation. The bird guilds of frugivores, undestory, terrestrial and midstory insectivores, nectarivores and raptors, and the endemic species of AF were area sensitive, decreasing significantly in richness and abundance in the SF. Terrestrial granivores were the only guild positively affected by forest fragmentation, containing mainly edge species, which forage in open areas or borders including crops. Our first observations on fragmentation effects on bird assemblages in the southernmost Argentinean Atlantic Forests did not validate the hypothesis on pre-adaptation to human disturbances in the bird communities of AF. On the contrary, we observed that forest dependent, endemic and several sensitive bird guilds were strongly affected by fragmentation, putting in evidence the vulnerability to the fragmentation process and the necessity to conserve large remnants to avoid reduction of the high biodiversity of AF birds.  相似文献   

17.
Tropical forest restoration is increasingly seen as an activity that may counteract or reduce biodiversity loss. However, few studies monitor fauna or consider measures of functional diversity to assess restoration success. We assessed the effect of a tropical montane forest restoration program on species and functional diversity, using amphibians as the target group. We compared amphibian assemblages in three types of land use: restoration areas, tropical montane cloud forest (TMCF; reference ecosystem) and cattle pastures (degraded ecosystem) in southern Mexico. We also described microclimate, microhabitat heterogeneity, woody vegetation structure and diversity for each type of land use, and their relationship to amphibian species and functional diversity. Compared to TMCF, restoration areas had similar environmental conditions. However, amphibian species richness was similar in the three types of land use and abundance was lower in the restoration areas. In TMCF, the amphibian assemblage was dominated by forest-specialist species, the pastures by generalist species, and the restoration areas by a combination of both species types. Interestingly, functional richness, functional evenness and functional divergence did not vary with land use, though the number of functional groups in restoration areas and TMCF was slightly higher. Overall, the results suggest that after seven years, active restoration provided habitat heterogeneity and recovered woody vegetation capable of maintaining amphibian species and functional groups similar to those inhabiting TMCF. Forest fragments adjacent to restoration areas seem to facilitate fauna recolonization and this emphasizes the importance of the conservation of the reference ecosystems to achieving restoration success.  相似文献   

18.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

20.
A growing body of literature has demonstrated significant biodiversity losses for many taxa when forest is converted to oil palm. However, no studies have directly investigated changes to biodiversity throughout the oil palm life cycle, in which oil palm matures for 25–30 yr before replanting. This process leads to major changes in the oil palm landscape that likely influence species assemblages and ecosystem function. We compare frog assemblages between mature (21–27‐yr old) and recently replanted (1–2‐yr old) oil palm in Sumatra, Indonesia. Across eighteen 2.25‐ha oil palm plots, we found 719 frogs from 14 species. Frog richness was 31 percent lower in replanted oil palm (nine species) than mature oil palm (13 species). Total frog abundance was 47 percent lower in replanted oil palm, and frog assemblage composition differed significantly between the two ages of oil palm. The majority of frog species were disturbance‐tolerant, although we encountered four forest‐associated frog species within mature oil palm despite a distance of 28 km between our study sites and the nearest extensive tract of forest. Although it is clear that protection of forest is of paramount importance for the conservation of tropical fauna, our results indicate that management decisions within tropical agricultural landscapes also have a profound impact on biodiversity. Practices such as staggered replanting or maintenance of connectivity among mature oil palm patches could help maintain frog diversity in the oil palm landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号