首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of morphology》2017,278(7):884-895
A histological and morphometric analysis of human metacarpal and carpal anlagen between the 16th and 22nd embryonic weeks was carried out with the aim of studying the establishment of the respective anlage architecture. No differences in the pattern of growth were documented between the peripheral and central zones of the metacarpal epiphyses and those of the carpals. The regulation of longitudinal growth in long bone anlagen occurred in the transition zone between the epiphysis and the diaphysis (homologous to the metaphyseal growth plate cartilage in more advanced developmental stage of the bone). Comparative zonal analysis was conducted to assess the chondrocyte density, the mean chondrocyte lacunar area, the paired chondrocyte polarity in the orthogonal longitudinal and transverse planes, and the lacunar shape transformation in the metacarpal. In transition from epiphysis to diaphysis chondrocyte density decreased and mean lacunar area increased. No significant differences in the chondrocyte maturation cycle were observed between proximal/distal metacarpal epiphyses and the carpal anlagen. The number of paired chondrocyte oriented along the growth vector was significantly higher in both proximal/distal transition zones between epiphysis and diaphysis. Human metacarpals shared with experimental models (like mice and nonmammal tetrapods) an early common chondrocyte maturation cycle but with a different timing due to the slower embryonic and fetal developmental rate of human anlagen.  相似文献   

2.
Certain local alterations in functional and reproductive activity of chondrocytes were stated at the development of the cartilage skeleton. In epiphyses chondrocytes gradually pass into the phase of rest (G0) with subsequent multiplication during the process of skeletal development. In these structures biosynthesis of nonsulfated proteoglycans predominate, in time, while in other cartilage zones--that of sulfated ones. Proofs are furnished on gradual transition of epiphyseal chondrocytes into the state peculiar for cells of the proliferative zone accompanied by an intensified biosynthesis of sulfated proteoglycans and collagenous proteins. Owing to these peculiarities they can be compared with the cells of the reserve zone in the mammalian metaepiphyseal cartilage. It was stated that intensity of chondrogenesis and growth of bones are affected by several processes: intensity of chondrocyte multiplication, the rate of their repeated division in the proliferative zone, the velosity with which the cells transfer into the state of hypertrophy and the rate of the periostal bone formation at the border-line of metaphysis and diaphysis.  相似文献   

3.
4.
The replacement of the calcified cartilage by bone tissue during the endochondral ossification of the mandibular condyle is dependent of the resorbing activity of osteoclats. After partial resorption, calcified cartilage septa are covered by a primary bone matrix secreted by osteoblasts. Osteoadherin (OSAD) is a small proteoglycan present in bone matrix but absent in cartilage during the endochondral ossification. The aim of this study was to analyze the effect of alendronate, a drug known to inhibit bone resorption by osteoclasts, on the endochondral ossification of the mandibular condyle of young rats, by evaluating the distribution of osteoclasts and the presence of OSAD in the bone matrix deposited. Wistar newborn rats (n=45) received daily injections of alendronate (n=27) or sterile saline solution as control (n=18) from the day of birth until the ages of 4, 14 and 30 days. At the days mentioned, the mandibular condyles were collected and processed for transmission electron microscopy analysis. Specimens were also submitted to tartrate resistant acid phosphatase (TRAP) histochemistry and ultrastructural immunodetection of OSAD. Alendronate treatment did not impede the recruitment and fusion of osteoclasts at the ossification zone during condyle growth, but they presented inactivated phenotype. The trabeculae at the ossification area consisted of cartilage matrix covered by a layer of primary bone matrix that was immunopositive to OSAD at all time points studied. Apparently, alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally. These findings highlight for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development.  相似文献   

5.
Little is known about fusion times of the primary and secondary centers of ossification in the sacrum, particularly from dry bone observations. In this study, the timing of union of these centers was studied in a sample of modern Portuguese skeletons (90 females and 101 males) between the ages of 0 and 30 years, taken from the Lisbon documented skeletal collection. A three‐stage scheme was used to assess fusion status between ossification centers as unfused, partially fused and completely fused. Posterior probability tables of age, given a certain stage of fusion, were calculated for most anatomical locations studied using both reference and uniform priors. Partial union of primary centers of ossification was observed from 1 to 8 years of age and partial union of secondary centers of ossification was observed from 15 to 21 years of age. The first primary centers of ossification to complete fusion are the neural arch with the centrum of the fifth sacral vertebrae and the last are the costal element with the centrum of the first sacral vertebra. The annular and sacroiliac epiphyses are the first, among the secondary centers of ossification observed, to complete fusion, after which the lateral margin fuses. This study offers information on timing of fusion of diverse locations in the developing sacrum useful for age estimation of complete or fragmented immature human skeletal remains and fills an important gap in the literature, by adding to previously published times of fusion of primary and secondary ossification centers in this sample. Am J Phys Anthropol 153:214–225, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
In comparison to the vast literature on articular cartilage structure and function, relatively little is known about how articular cartilage forms during embryo-genesis and is endowed with unique phenotypic properties, most notably the ability to persist and function throughout postnatal life. In this minireview, we summarize recent studies from our laboratory suggesting that the extracellular matrix protein tenascin-C is involved in the genesis and function of articular chondrocytes. These and other data have led us to propose that tenascin-C may be part of in vivo mechanisms whereby articular chondrocytes develop at the epiphysis of long bone models, remain functional throughout postnatal life, and avoid the endochondral ossification process undertaken by the bulk of chondrocytes located in the metaphysis and diaphysis of skeletal models.  相似文献   

7.
《The Journal of cell biology》1994,126(6):1611-1623
To elucidate the role of PTHrP in skeletal development, we examined the proximal tibial epiphysis and metaphysis of wild-type (PTHrP-normal) 18- 19-d-old fetal mice and of chondrodystrophic litter mates homozygous for a disrupted PTHrP allele generated via homologous recombination in embryonic stem cells (PTHrP-depleted). In the PTHrP-normal epiphysis, immunocytochemistry showed PTHrP to be localized in chondrocytes within the resting zone and at the junction between proliferative and hypertrophic zones. In PTHrP-depleted epiphyses, a diminished [3H]thymidine-labeling index was observed in the resting and proliferative zones accounting for reduced numbers of epiphyseal chondrocytes and for a thinner epiphyseal plate. In the mutant hypertrophic zone, enlarged chondrocytes were interspersed with clusters of cells that did not hypertrophy, but resembled resting or proliferative chondrocytes. Although the overall content of type II collagen in the epiphyseal plate was diminished, the lacunae of these non-hypertrophic chondrocytes did react for type II collagen. Moreover, cell membrane-associated chondroitin sulfate immunoreactivity was evident on these cells. Despite the presence of alkaline phosphatase activity on these nonhypertrophic chondrocytes, the adjacent cartilage matrix did not calcify and their persistence accounted for distorted chondrocyte columns and sporadic distribution of calcified cartilage. Consequently, in the metaphysis, bone deposited on the irregular and sparse scaffold of calcified cartilage and resulted in mixed spicules that did not parallel the longitudinal axis of the tibia and were, therefore, inappropriate for bone elongation. Thus, PTHrP appears to modulate both the proliferation and differentiation of chondrocytes and its absence alters the temporal and spatial sequence of epiphyseal cartilage development and of subsequent endochondral bone formation necessary for normal elongation of long bones.  相似文献   

8.
The hypothesis is widely held that, in growth plate during endochondral ossification, proteoglycans in the extracellular matrix of the lower hypertrophic zone are degraded by proteases and removed before mineralization, and that this is the mechanism by which a noncalcifiable matrix is transformed into a calcifiable matrix. We have evaluated this hypothesis by examining the immunofluorescent localization and concentrations of proteoglycan monomer core protein and link protein, and the concentrations of glycosaminoglycans demonstrated by safranin 0 staining, in the different zones of the bovine fetal cartilage growth plate. Monospecific antibodies were prepared to proteoglycan monomer core protein and to link protein. The immunofluorescent localization of these species was examined in decalcified and undecalcified sections containing the zones of proliferating and hypertrophic chondrocytes and in sections containing the zones of proliferating and hypertrophic chondrocytes and the metaphysis, decalcified in 0.5 M EDTA, pH 7.5, in the presence of protease inhibitors. Proteoglycan monomer core protein and link protein are demonstrable without detectable loss throughout the extracellular matrix of the longitudinal septa of the hypertrophic zone and in the calcified cartilage of the metaphysis. In fact, increased staining is observed in the calcifying cartilage. Contrary to the prevailing hypothesis, our results indicate that there is no net loss of proteoglycans during mineralization and that the proteoglycans become entombed in the calcified cartilage which provides a scaffolding on which osteoid and bone are formed. Proteoglycans appear to persist unaltered in the calcified cartilage core of the trabeculae, until at last the entire trabeculae are eroded from their surfaces and removed by osteoclasts, when the primary spongiosa is replaced by the secondary spongiosa.  相似文献   

9.
Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1(-/-)) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1(-/-)) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1(-/-) mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis.  相似文献   

10.
11.
During development of the skeleton, osteoclast (OC) recruitment and migration are required for the vascular invasion of the cartilaginous anlage and the ossification of long bones. c-Cbl lies downstream of the vitronectin receptor and forms a complex with c-Src and Pyk2 in a signaling pathway that is required for normal osteoclast motility. To determine whether the decreased motility we observed in vitro in c-Cbl(-/-) OCs translated into decreased cell migration in vivo, we analyzed the long bones of c-Cbl(-/-) mice during development. Initiation of vascularization and replacement of cartilage by bone were delayed in c-Cbl(-/-) mice, due to decreased osteoclast invasion of the hypertrophic cartilage through the bone collar. Furthermore, c-Cbl(-/-) mice show a delay in the formation of secondary centers of ossification, a thicker hypertrophic zone of the growth plate, and a prolonged presence of cartilaginous remnants in the spongiosa, confirming a decrease in resorption of the calcified cartilage. Thus, the decrease in motility of c-Cbl(-/-) osteoclasts observed in vitro results in a decreased ability of osteoclasts to invade and resorb bone and mineralized cartilage in vivo. These results confirm that c-Cbl plays an important role in osteoclast motility and resorbing activity.  相似文献   

12.
The maturation process from the appearance to the fusion of the secondary ossification centers of extremities was studied in Wistar rats aged 0 to 134 weeks. The examination of the secondary ossification centers made by radiography. The assessment of the stage of development was made in accordance with the criteria proposed by Ohwada and Sutow. The secondary ossification center was found to be take one of the following three types of maturation processes : (1) the acute ossification, (2) the delayed ossification, and (3) the incomplete ossification. No fusion was observed up to 134 weeks in certain epiphyses of the rat. This type of ossification designated as the incomplete ossification may be specific to the mouse and rat. The relative lengths of time required for appearance and fusion in the average prospective life were obtained for the rat. They were compared with those of the mouse and man. The relative length of time necessary for maturity of the secondary ossification centers was shown to be the shortest in the rat and the longest in man. The results suggested that the rat may reach maturity in the bone age at 17 to 21 weeks of age. The rat at this age may be regarded as being adult corresponding to age 17 weeks in mice and 18 to 24 years in man.  相似文献   

13.
It has been known from clinical and experimental observations that the peripheral nervous system is involved in the development of long bones. Expression of growth-associated protein 43 (GAP-43/B-50) was found in axonal growth cones during embryonic and postnatal ontogeny as well as in regenerating axons after nerve injury. The aim of the present study was to examine the occurrence of growing nerve fibers in rat tibia from gestational day 16 (GD 16) to postnatal day 28 (PD28). An indirect immunoenzymatic reaction using antibodies raised against GAP-43 was applied to detect outgrowing nerve fibers penetrating into the developing bone. On GD 16 and GD 17 no GAP-43-immunoreactive (IR) fibers were observed in the close vicinity of bone rudiments. On GD19 GAP-43-IR fibers were scarcely present within the periosteum of the central portion of the diaphysis. In the perichondrium surrounding the proximal epiphysis, nerve fibers were first detected around birth. From PD1 onward, numerous fibers were seen in the fibrous buds of the perichondrium at the epi-metaphyseal junction (Ranvier's grooves), some of them being adjacent to the blood vessels. Nerve fibers penetrating into the bone and located in the bone marrow, predominantly associated with blood vessels, were first observed on GD21 and their number increased with further development. They were initially located in the central portion of the diaphysis and later extended towards the metaphyses. On PD4 an increased number of GAP-43-IR fibers appeared in the perichondrium of proximal and distal epiphyses. In the fibrous strands penetrating into the epiphyses and in the secondary ossification centers, nerve fibers were first observed on PD10. From PD14 onward the pattern of tibial innervation remained unchanged but the intensity of GAP-43 immunostaining visibly decreased. The present study demonstrates that developing long bones of rat hindlimbs are supplied by growing nerve fibers immunoreactive for GAP-43 from GD 19 onward. Time and location of their appearance were at least partially correlated with known events taking place during long bone development, e.g. formation of primary and secondary ossification centers. Decreased expression of GAP-43 immunoreactivity in later developmental stages is believed to reflect nerve fiber maturation.  相似文献   

14.
15.
Endochondral ossification in the growth cartilage of long bones from the bullfrog Rana catesbeiana was examined. In stage-46 tadpoles and 1-year-old animals, the hypertrophic cartilage had a smooth contact with the bone marrow and the matrix showed no calcification or endochondral bone formation. In spite of showing no aspects of calcification, the chondrocytes exhibited alkaline phosphatase activity and some of them died by apoptosis. However, matrix calcification and endochondral ossification were observed in 2-year-old bullfrogs. Calcium deposits appeared as isolated or coalesced spherical structures in the extracellular matrix of hypertrophic cartilage. Bone trabeculae were restricted to the central area at the sites where the hypertrophic cartilage surface was exposed to the bone marrow. Cartilage matrix calcification and the formation of bone trabeculae were not dependent on each other. Osteoclasts were involved in calcified matrix resorption. These results demonstrate that the calcification of hypertrophic cartilage and the deposition of bone trabeculae are late events in R. catesbeiana and do not contribute to the development and growth of long bones in adults. These processes may play a role in reinforcing bony structures as the bullfrog gains weight in adulthood. In addition, the deposition of bone trabeculae is not dependent on cartilage matrix calcification.  相似文献   

16.
17.
S Fukuda  F Cho  S Honjo 《Jikken dobutsu》1978,27(4):387-397
The development of so-called long bones in the extremity has been studied roentgenographically in forty-seven males and fifty-one females cynomolgus monkeys bred and reared at the National Institute of Health. The age of the females ranged from five months to eight years and nine months, and that of the males was from four months to seven years. In addition, the fetuses of six to twenty weeks of gestation age were examined for the time of appearance of ossification centers. As the biological parameters concerning body growth, the body weight and the bone length were measured and the secondary ossification centers were scrutinized and assessed the maturity process on the basis of the criteria that divided the state into eleven stages. Also the allometric analyses of body weight against bone length was conducted. Most of the secondary ossification centers except the proximal fibulal epiphysis appeared during the period from the prenatal stage (15-20 weeks of gestationage) to the postnatal one (several months of age). From four to five months of age, many ossification centers had developed to some extent. But, the appearance of proximal fibulal epiphysis was delayed and often lacking until 10 months of age in female and one year and three months of age in male. The earliest epiphyseal fusion was observed at the distal humeral epiphysis in both sexes. The latest epiphyseal fusion was observed at the distal ulnal epiphysis in both sexes and at the distal ulnal and radial epiphyses in female. From this study, the time of fusion was at five and three guarters years of age in females and at six and a half years of age in males. As a result, it is suggested that the estimation of animal's age might be put to practical use by introducing the assessing method that the score was given from the observation of the secondary ossification center.  相似文献   

18.
The non-mineral component of bone matrix consists of 90% collagenous, 10% non-collagenous proteins. These proteins regulate mineralization, growth, cell signaling and differentiation, and provide bone with its tensile strength. Expression of bone matrix proteins have historically been studied individually or in small numbers owing to limitations in analytical technologies. Current mass-spectrometric and separations technologies allow a global view of protein expression patterns in complex samples. To our knowledge, no proteome profile of bone matrix has yet been reported. Therefore, we have used mass spectrometry as a tool to generate a profile of proteins present in the extracellular matrix of adult rat bone. Overall, 108 and 25 proteins were identified with high confidence in the metaphysis and diaphysis, respectively, using a bottom up proteomic technique. Twenty-one of these proteins were present in both the metaphysis and diaphysis including the bone specific proteins, osteocalcin, type I collagen, osteopontin, osteoregulin, and bone sialoprotein. Interestingly, type II collagen, a protein thought to be exclusively expressed in cartilage, was identified in both the metaphysis and diaphysis. This observation was validated by Western blot. Additionally, the presence of aggrecan, another protein expressed in cartilage was identified in the bone matrix extracts by Western blot. The proteome profile generated using this technology represents an initial survey of the acid soluble proteins of bone matrix which provides a reference for the analysis of deviations from the normal composition due to perturbations or disease states.  相似文献   

19.
Galectin-3 is a 30 kDa beta-galactoside binding protein that belongs to the galectin family of animal lectins. By immunocytochemistry we show the presence of galectin-3 protein in the differentiated chondrocytes of the epiphyseal plate cartilage of long bones of both fetal and neonatal mice. The highest concentrations of galectin-3 are found in the cytoplasm of mature and early hypertrophic chondrocytes. Very little protein is detected in the late hypertrophic chondrocytes undergoing terminal maturation and cell death. Galectin-3 has also been found in osteoblasts and osteocytes of the woven bone of the metaphysis and the cortical bone of the diaphysis, as well as in osteoclasts and mononuclear cells within bone marrow cavities. Galectin-3 is never detected extracellularly, the protein seems restricted to the cytoplasm of chondrocytes and bone cells, although it is occasionally detected in the nuclei of dense non-hypertrophic chondrocytes in the zone of calcification and in young osteoblasts. The results indicate that galectin-3 is a marker of both chondrogenic and osteogenic cell lineages. They also suggest that galectin-3 could be involved in the process of endochondral bone formation, possibly as a regulator of chondrocyte survival.  相似文献   

20.
Type VI collagen appears central to the maintenance of tissue integrity. In adult articular cartilage, type VI collagen is preferentially localised in the chondron where it may be involved in cell attachment. In actively remodelling developing cartilage, the distribution is less certain. We have used confocal immunohistochemistry and in situ hybridisation to investigate type VI collagen distribution in third trimester bovine proximal femoral epiphyses. In general, type VI collagen immunofluorescence was concentrated in the chondrocyte pericellular matrix, with staining intensity strongest in regions which persist to maturity and weakest in regions that remodel during development. Type VI collagen was also present in cartilage canals. In the growth plate and around the secondary centre of ossification, the intensity of type VI collagen stain rapidly decreased with chondrocyte maturation and was absent at hypertrophy, except where canal branches penetrated the growth plate and stain was retained around the adjacent chondrocytes. In situ hybridisation confirmed the presence of type VI collagen mRNA in cartilage canal mesenchymal cells but the signal was low in chondrocytes, suggesting minimal levels of synthesis and turnover. The results are consistent with a role for type VI collagen in stabilising the extracellular matrix during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号