首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one(DCEBIO) on the Cl secretory response of the mouse jejunum using the Ussing short-circuit current (Isc) technique. DCEBIO stimulated a concentration-dependent, sustained increase in Isc (EC50 41 ± 1 µM). Pretreating tissues with 0.25 µM forskolin reduced the concentration-dependent increase in Isc by DCEBIO and increased the EC50 (53 ± 5 µM). Bumetanide blocked (82 ± 5%) the DCEBIO-stimulated Isc consistent with Cl secretion. DCEBIO was a more potent stimulator of Cl secretion than its parent molecule, 1-ethyl-2-benzimidazolinone. Glibenclamide or NPPB reduced the DCEBIO-stimulated Isc by >80% indicating the participation of CFTR in the DCEBIO-stimulated Isc response. Clotrimazole reduced DCEBIO-stimulated Isc by 67 ± 15%, suggesting the participation of the intermediate conductance Ca2+-activated K+ channel (IKCa) in the DCEBIO-activated Isc response. In the presence of maximum forskolin (10 µM), the DCEBIO response was reduced and biphasic, reaching a peak response of the change in Isc of 43 ± 5 µA/cm2 and then falling to a steady-state response of 17 ± 10 µA/cm2 compared with DCEBIO control tissues (61 ± 6 µA/cm2). The forskolin-stimulated Isc in the presence of DCEBIO was reduced compared with forskolin control tissues. Similar results were observed with DCEBIO and 8-BrcAMP where adenylate cyclase was bypassed. H89, a PKA inhibitor, reduced the DCEBIO-activated Isc, providing evidence that DCEBIO increased Cl secretion via a cAMP/PKA-dependent manner. These data suggest that DCEBIO stimulates Cl secretion of the mouse jejunum and that DCEBIO targets components of the Cl secretory mechanism. 1-ethyl-2-benzimidazolinone; forskolin; glibenclamide; clotrimazole; H89  相似文献   

2.
Receptor-mediated inhibition of amiloride-sensitive sodium absorption was observed in primary and immortalized murine renal collecting duct cell (mCT12) monolayers. The addition of epidermal growth factor (EGF) to the basolateral bathing solution of polarized monolayers reduced amiloride-sensitive short-circuit current (Isc) by 15–25%, whereas the addition of ATP to the apical bathing solution decreased Isc by 40–60%. Direct activation of PKC with phorbol 12-myristate 13-acetate (PMA) and mobilization of intracellular calcium with 2,5-di-tert-butyl-hydroquinone (DBHQ) reduced amiloride-sensitive Isc in mCT12 monolayers by 46 ± 4% (n = 8) and 22 ± 2% (n = 8), respectively. Exposure of mCT12 cells to EGF, ATP, PMA, and DBHQ caused an increase in phosphorylation of p42/p44 (extracellular signal-regulated kinase; ERK1/2). Pretreatment of mCT12 monolayers with an ERK kinase inhibitor (PD-98059; 30 µM) prevented phosphorylation of p42/p44 and significantly reduced EGF, ATP, and PMA-induced inhibition of amiloride-sensitive Isc. In contrast, pretreatment of monolayers with a PKC inhibitor (bisindolylmaleimide I; GF109203x; 1 µM) almost completely blocked the PMA-induced decrease in Isc, but did not alter the EGF- or ATP-induced inhibition of Isc. The DBHQ-mediated decrease in Isc was due to inhibition of basolateral Na+-K+-ATPase, but EGF-, ATP-, and PMA-induced inhibition was most likely due to reduced apical sodium entry (epithelial Na+ channel activity). The results of these studies demonstrate that acute inhibition of amiloride-sensitive sodium transport by extracelluar ATP and EGF involves ERK1/2 activation and suggests a role for MAP kinase signaling as a negative regulator of electrogenic sodium absorption in epithelia. mitogen-activated protein kinase; epithelial ion transport; epithelial sodium channel  相似文献   

3.
Experiments were conducted to determine whether the Cl secretagogue, 1-ethyl-2-benzimidazolinone (EBIO), stimulates Cl transport in the rabbit conjunctival epithelium. For this study, epithelia were isolated in an Ussing-type chamber under short-circuit conditions. The effects of EBIO on the short-circuit current (Isc) and transepithelial resistance (Rt) were measured under physiological conditions, as well as in experiments with altered electrolyte concentrations. Addition of 0.5 mM EBIO to the apical bath stimulated the control Isc by 64% and reduced Rt by 21% (P < 0.05; paired data). Under Cl-free conditions, Isc stimulation using EBIO was markedly attenuated. In the presence of an apical-to-basolateral K+ gradient and permeabilization of the apical membrane, the majority of the Isc reflected the transcellular movement of K+ via basolateral K+ channels. Under these conditions, EBIO in combination with A23187 elicited nearly instantaneous 60–90% increases in Isc that were sensitive to the calmodulin antagonist calmidazolium and the K+ channel blocker tetraethyl ammonium. In the presence of an apical-to-basolateral Cl gradient and nystatin permeabilization of the basolateral aspect, EBIO increased the Cl-dependent Isc, an effect prevented by the channel blocker glibenclamide (0.3 mM). The latter compound also was used to determine the proportion of EBIO-evoked unidirectional 36Cl fluxes in the presence of the Cl gradient that traversed the epithelium transcellularly. Overall, EBIO activated apical Cl channels and basolateral K+ channels (presumably those that are Ca2+ dependent), thereby suggesting that this compound, or related derivatives, may be suitable as topical agents to stimulate fluid transport across the tissue in individuals with lacrimal gland deficiencies. Ussing chamber; short-circuit current; electrolyte transport; chloride secretagogue; potassium conductance; 1-ethyl-2-benzimidazolinone; 1,10-phenanthroline  相似文献   

4.
We used the short-circuit current (Isc) technique to investigate the effects of the isoflavone genistein on the electrogenic Cl secretion of the mouse jejunum. Genistein stimulated a sustained increase in Isc that was dose dependent. Bumetanide inhibited 76 ± 5% of the genistein-stimulated Isc consistent with activation of Cl secretion. Genistein failed to stimulate Isc following maximal activation of the cAMP pathway by forskolin. In addition, forskolin had a reduced effect on Isc of the mouse jejunum in the presence of genistein. Glibenclamide, a blocker of CFTR, eliminated the genistein-stimulated increase of Isc and reduced the forskolin-activated Isc. Clotrimazole, a Ca2+-activated K+ channel blocker, failed to reduce the genistein-stimulated Isc. Vanadate, a blocker of tyrosine-dependent phosphatases, reduced the genistein-activated Isc. Tyrphostin A23, a tyrosine kinase inhibitor, reduced basal Isc, after which genistein failed to stimulate Isc. These data suggest that genistein activated a sustained Cl secretory response of the mouse jejunum and that the effect of genistein was via a tyrosine-dependent phosphorylation pathway. 1-ethyl-2-benzimidazolone; vanadate; tyrphostin A23; cantharidic acid; phosphatase  相似文献   

5.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

6.
Heme induces Cl secretion in intestinal epithelial cells, most likely via carbon monoxide (CO) generation. The major source of endogenous CO comes from the degradation of heme via heme oxygenase (HO). We hypothesized that an inhibitor of HO activity, tin protoporphyrin (SnPP), may inhibit the stimulatory effect of heme on Cl secretion. To test this hypothesis, we treated an intestinal epithelial cell line (Caco-2 cells) with SnPP. In contrast to our expectations, Caco-2 cells treated with SnPP had an increase in their short-circuit currents (Isc) in Ussing chambers. This effect was observed only when the system was exposed to ambient light. SnPP-induced Isc was caused by Cl secretion because it was inhibited in Cl-free medium, with ouabain or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). The Cl secretion was not via activation of the CFTR, because a specific inhibitor had no effect. Likewise, inhibitors of adenylate cyclase and guanylate cyclase had no effect on the enhanced Isc. SnPP-induced Isc was inhibited by the antioxidant vitamins, -tocopherol and ascorbic acid. Electron paramagnetic resonance experiments confirmed that oxidative reactions were initiated with light in cells loaded with SnPP. These data suggest that SnPP-induced effects may not be entirely due to the inhibition of HO activity but rather to light-induced oxidative processes. These novel effects of SnPP-photosensitized oxidation may also lead to a new understanding of how intestinal Cl secretion can be regulated by the redox environment of the cell. heme oxygenase; electrolyte transport; carbon monoxide; cGMP; reactive oxygen species  相似文献   

7.
Secretion of Cl and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current (Isc)] and conductance (Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 µM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 µM, TRAM-34 inhibited Isc and Gt activated by Epi (4%), PGE2 (30%) and PGE2 + CCh (60%). The IC50 of 4.0 µM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 µM), a quaternary ammonium, inhibited Cl secretory Isc and Gt activated by PGE2 (20%) but not K+ secretion activated by Epi. Thus Cl secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium. epinephrine; prostaglandin E2; cholinergic; Kcnn4; TRAM-34; clofilium  相似文献   

8.
The ductalepithelium of the semicircular canal forms much of the boundary betweenthe K+-rich luminal fluid and the Na+-richabluminal fluid. We sought to determine whether the net ion fluxproducing the apical-to-basal short-circuit current(Isc) in primary cultures was due to anionsecretion and/or cation absorption and under control of receptoragonists. Net fluxes of 22Na, 86Rb, and36Cl demonstrated a basal-to-apical Clsecretion that was stimulated by isoproterenol. Isoproterenol andnorepinephrine increased Isc with anEC50 of 3 and 15 nM, respectively, and isoproterenolincreased tissue cAMP of native canals with an EC50 of 5 nM. Agonists for adenosine, histamine, and vasopressin receptors had noeffect on Isc. Isoproterenol stimulation ofIsc and cAMP was inhibited by ICI-118551(IC50 = 6 µM for Isc) but notby CGP-20712A (1 µM) in primary cultures, and similar results werefound in native epithelium. Isc was partially inhibited by basolateral Ba2+ (IC50 = 0.27 mM) and ouabain, whereas responses to genistein, glibenclamide, andDIDS did not fully fit the profile for CFTR. Our findings show that thecanal epithelium contributes to endolymph homeostasis by secretion ofCl under 2-adrenergic control with cAMP assecond messenger, a process that parallels the adrenergic control ofK+ secretion by vestibular dark cells. The current workpoints to one possible etiology of endolymphatic hydrops in Meniere'sdisease and may provide a basis for intervention.

  相似文献   

9.
To investigate the biology of the malegenital duct epithelium, we have established cell cultures from theovine vas deferens and epididymis epithelium. These cells develop tightjunctions, high transepithelial electrical resistance, and alumen-negative transepithelial potential difference as a sign of activetransepithelial ion transport. In epididymis cultures the equivalentshort-circuit current (Isc) averaged 20.8 ± 0.7 µA/cm2 (n = 150) and was partially inhibited byapical application of amiloride with an inhibitor concentration of 0.64 µM. In vas deferens cultures, Isc averaged 14.4 ± 1.1 µA/cm2 (n = 18) and was also inhibited byapical application of amiloride with a half-maximal inhibitorconcentration (Ki) of 0.68 µM. The remainingamiloride-insensitive Isc component in epididymisand vas deferens cells was partially inhibited by apical application ofthe Cl channel blocker diphenylamine-2-carboxylicacid (1 mM). It was largely dependent on extracellularCl and, to a lesser extent, on extracellularHCO3. It was further stimulated bybasolateral application of forskolin (105 M), which increasedIsc by 3.1 ± 0.3 µA/cm2 (n=65) in epididymis and 0.9 ± 0.1 µA/cm2 (n =11) in vas deferens. These findings suggest that cultured ovine vasdeferens and epididymis cells absorb Na+ viaamiloride-sensitive epithelial Na+ channels (ENaC) andsecrete Cl and HCO3via apical cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. This interpretation is supported byRT-PCR data showing that vas deferens and epididymis cells express CFTRand ENaC mRNA.

  相似文献   

10.
Skin from larval bullfrogs was mounted in an Ussing-type chamberin which the apical surface was bathed with a Ringer solution containing 115 mM K+ and thebasolateral surface was bathed with a Ringer solution containing 115 mMNa+. Ion transport was measured asthe short-circuit current(Isc) with alow-noise voltage clamp, and skin resistance(Rm) wasmeasured by applying a direct current voltage pulse. Membrane impedance was calculated by applying a voltage signal consisting of 53 sine wavesto the command stage of the voltage clamp. From the ratio of theFourier-transformed voltage and current signals, it was possible tocalculate the resistance and capacitance of the apical and basolateralmembranes of the epithelium(Ra andRb,Ca and Cb,respectively). With as the anion,Rm decreasedrapidly within 5 min following the addition of 150 U/ml nystatin to theapical solution, whereasIsc increasedfrom 0.66 to 52.03 µA/cm2 over a60-min period. These results indicate that nystatin becomes rapidlyincorporated into the apical membrane and that the increase inbasolateral K+ permeabilityrequires a more prolonged time course. Intermediate levels ofIsc were obtainedby adding 50, 100, and 150 U/ml nystatin to the apical solution. Thisproduced a progressive decrease in Ra andRb whileCa andCb remainedconstant. With Cl as theanion, Isc valuesincreased from 2.03 to 89.57 µA/cm2 following treatment with150 U/ml nystatin, whereas with gluconate as the anionIsc was onlyincreased from 0.63 to 11.64 µA/cm2. This suggests that theincrease in basolateral K+permeability produced by nystatin treatment, in the presence of morepermeable anions, is due to swelling of the epithelial cells of thetissue rather than the gradient for apicalK+ entry. Finally,Cb was notdifferent among skins exposed toCl,, or gluconate, despite the largedifferences inIsc, nor didinhibition of Iscby treatment with hyperosmotic dextrose cause significant changes inCb. These resultssupport the hypothesis that increases in cell volume activateK+ channels that are alreadypresent in the basolateral membrane of epithelial cells.

  相似文献   

11.
Pancreatic duct cells express a Ca2+-activated Cl- conductance (CaCC), upregulation of which may be beneficial to patients with cystic fibrosis. Here, we report that HPAF, a human pancreatic ductal adenocarcinoma cell line that expresses CaCC, develops into a high-resistance, anion-secreting epithelium. Mucosal ATP (50 µM) caused a fourfold increase in short-circuit current (Isc), a hyperpolarization of transepithelial potential difference (from -4.9 ± 0.73 to -8.5 ± 0.84 mV), and a fall in resistance to less than one-half of resting values. The effects of ATP were inhibited by mucosal niflumic acid (100 µM), implicating an apical CaCC in the response. RT-PCR indicated expression of hClC-2, hClC-3, and hClC-5, but surprisingly not hCLCA-1 or hCLCA-2. K+ channel activity was necessary to maintain the ATP-stimulated Isc. Using a pharmacological approach, we found evidence for two types of K+ channels in the mucosal and serosal membranes of HPAF cells, one activated by chlorzoxazone (500 µM) and sensitive to clotrimazole (30 µM), as well as one blocked by clofilium (100 µM) but not chromanol 293B (5 µM). RT-PCR indicated expression of the Ca2+-activated K+ channel KCNN4, as well as the acid-sensitive, four transmembrane domain, two pore K+ channel, KCNK5 (hTASK-2). Western blot analysis verified the expression of CLC channels, as well as KCNK5. We conclude that HPAF will be a useful model system for studying channels pertinent to anion secretion in human pancreatic duct cells. Ussing chamber; short-circuit current; RT-PCR; immunoblot  相似文献   

12.
The action of the isoflavonegenistein on the cystic fibrosis transmembrane conductance regulator(CFTR) has been studied in many cell systems but not in intact murinetissues. We have investigated the action of genistein on murine tissuesfrom normal and cystic fibrosis (CF) mice. Genistein increased theshort-circuit current (Isc) in tracheal(16.4 ± 2.8 µA/cm2) and colonic (40.0 ± 4.4 µA/cm2) epithelia of wild-type mice. This increase wasinhibited by furosemide, diphenylamine-2-carboxylate, andglibenclamide, but not by DIDS. In contrast, genistein produced nosignificant change in the Isc of the trachealepithelium (0.9 ± 1.1 µA/cm2) and decreased theIsc of colons from CF null (13.1 ± 2.3 µA/cm2) and F508 mice (10.3 ± 1.3 µA/cm2). Delivery of a human CFTRcDNA-liposome complex to the airways of CF null mice restored thegenistein response in the tracheas to wild-type levels. Tracheas fromF508 mice were also studied: 46% of trachea showed no response togenistein, whereas 54% gave an increase in Iscsimilar to that in wild type. We conclude that genistein activatesCFTR-mediated Cl secretion in the murine trachea anddistal colon.

  相似文献   

13.
Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902. Cells were maintained in continuous culture for >4 yr and 200 passages in a typical growth medium. Frozen stocks were generated, and thawed cells exhibited growth characteristics indistinguishable from their nonfrozen counterparts. Molecular and immunocytochemical studies confirmed the origin and epithelial nature of these cells. When seeded on permeable supports, PVD9902 cells grew as electrically tight (>6,000 ·cm2), confluent monolayers that responded to forskolin with an increase in short-circuit current (Isc; 8 ± 1 µA/cm2) that required Cl, HCO3, and Na+, and was partially sensitive to bumetanide. mRNA was expressed for a number of anion transporters, including CFTR, electrogenic Na+-HCO3 cotransporter 1b (NBCe1b), downregulated in adenoma, pendrin, and Cl/formate exchanger. Both forskolin and isoproterenol caused an increase in cellular cAMP levels. In addition, PVD9902 cell monolayers responded to physiological (i.e., adenosine, norepinephrine) and pharmacological [i.e., 5'-(N-ethylcarboxamido)adenosine, isoproterenol] agonists with increases in Isc. Unlike their freshly isolated counterparts, however, PVD9902 cells did not respond to glucocorticoid exposure with an increase in amiloride-sensitive Isc. RT-PCR analysis revealed the presence of both glucocorticoid and mineralocorticoid receptor mRNA as well as mRNA for the - and -subunits of the epithelia Na+ channels (- and -ENaC), but not -ENaC. Nonetheless, PVD9902 cells recapitulated most observations in freshly isolated cells and thus represent a powerful new tool to characterize mechanisms that contribute to male reproductive function. male reproductive tract; cystic fibrosis; epithelial Na+ channel expression; glucocorticoid receptor; adrenergic; vasopressin  相似文献   

14.
Serous cells secreteCl and HCO3 and play an importantrole in airway function. Recent studies suggest that aCl/HCO3 anion exchanger (AE) maycontribute to Cl secretion by airway epithelial cells.However, the molecular identity, the cellular location, and thecontribution of AEs to Cl secretion in serous epithelialcells in tracheal submucosal glands are unknown. The goal of thepresent study was to determine the molecular identity, the cellularlocation, and the role of AEs in the function of serous epithelialcells. To this end, Calu-3 cells, a human airway cell line with aserous-cell phenotype, were studied by RT-PCR, immunoblot, andelectrophysiological analysis to examine the role of AEs inCl secretion. In addition, the subcellular location of AEproteins was examined by immunofluorescence microscopy. Calu-3 cellsexpressed mRNA and protein for AE2 as determined by RT-PCR and Westernblot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rattracheal serous cells in situ. InCl/HCO3/Na+-containingmedia, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP)-stimulated short-circuit anion current (Isc) was reduced by basolateral but not byapical application of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid(50 µM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 µM)], inhibitors of AEs. In the absence of Na+ in thebath solutions, to eliminate the contributions of the Na+/HCO3 andNa+/K+/2Cl cotransporters toIsc, CPT-cAMP stimulated a small DNDS-sensitive Isc. Taken together with previous studies, theseobservations suggest that a small component of cAMP-stimulatedIsc across serous cells may be referable toCl secretion and that uptake of Cl acrossthe basolateral membrane may be mediated by AE2.

  相似文献   

15.
Forskolin,UTP, 1-ethyl-2-benzimidazolinone (1-EBIO), NS004, 8-methoxypsoralen(Methoxsalen; 8-MOP), and genistein were evaluated for theireffects on ion transport across primary cultures of human bronchialepithelium (HBE) expressing wild-type (wt HBE) and F508(F-HBE) cystic fibrosis transmembrane conductance regulator. In wtHBE, the baseline short-circuit current (Isc)averaged 27.0 ± 0.6 µA/cm2 (n = 350). Amiloride reduced this Isc by 13.5 ± 0.5 µA/cm2 (n = 317). In F-HBE,baseline Isc was 33.8 ± 1.2 µA/cm2 (n = 200), and amiloride reducedthis by 29.6 ± 1.5 µA/cm2 (n = 116), demonstrating the characteristic hyperabsorption of Na+ associated with cystic fibrosis (CF). In wt HBE,subsequent to amiloride, forskolin induced a sustained,bumetanide-sensitive Isc(Isc = 8.4 ± 0.8 µA/cm2; n = 119). Addition ofacetazolamide, 5-(N-ethyl-N-isopropyl)-amiloride, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid further reduced Isc, suggesting forskolin also stimulatesHCO3 secretion. This was confirmed by ionsubstitution studies. The forskolin-induced Iscwas inhibited by 293B, Ba2+, clofilium, and quinine,whereas charybdotoxin was without effect. In F-HBE the forskolinIsc response was reduced to 1.2 ± 0.3 µA/cm2 (n = 30). In wt HBE, mucosal UTPinduced a transient increase in Isc ( Isc = 15.5 ± 1.1 µA/cm2;n = 44) followed by a sustained plateau, whereas inF-HBE the increase in Isc was reduced to5.8 ± 0.7 µA/cm2 (n = 13). In wtHBE, 1-EBIO, NS004, 8-MOP, and genistein increased Isc by 11.6 ± 0.9 (n = 20), 10.8 ± 1.7 (n = 18), 10.0 ± 1.6 (n = 5), and 7.9 ± 0.8 µA/cm2(n = 17), respectively. In F-HBE, 1-EBIO, NS004, and8-MOP failed to stimulate Cl secretion. However, additionof NS004 subsequent to forskolin induced a sustained Clsecretory response (2.1 ± 0.3 µA/cm2,n = 21). In F-HBE, genistein alone stimulatedCl secretion (2.5 ± 0.5 µA/cm2,n = 11). After incubation of F-HBE at 26°C for24 h, the responses to 1-EBIO, NS004, and genistein were allpotentiated. 1-EBIO and genistein increased Na+ absorptionacross F-HBE, whereas NS004 and 8-MOP had no effect. Finally,Ca2+-, but not cAMP-mediated agonists, stimulatedK+ secretion across both wt HBE and F-HBE in aglibenclamide-dependent fashion. Our results demonstrate thatpharmacological agents directed at both basolateral K+ andapical Cl conductances directly modulate Clsecretion across HBE, indicating they may be useful in ameliorating theion transport defect associated with CF.

  相似文献   

16.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

17.
We havepreviously shown that Ca2+-dependent Clsecretion across intestinal epithelial cells is limited by a signalingpathway involving transactivation of the epidermal growth factorreceptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK inregulation of Ca2+-dependent Cl secretion.Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 µM)stimulated phosphorylation and activation of p38 MAPK. The p38inhibitor SB-203580 (10 µM) potentiated and prolonged short-circuitcurrent (Isc) responses to CCh acrossvoltage-clamped T84 cells to 157.4 ± 6.9% of thosein control cells (n = 21; P < 0.001).CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitortyrphostin AG-1478 (0.1 nM-10 µM) and by the Src family kinaseinhibitor PP2 (20 nM-2 µM). The effects of CCh on p38phosphorylation were mimicked by thapsigargin (TG; 2 µM), whichspecifically elevates intracellular Ca2+, and wereabolished by the Ca2+ chelator BAPTA-AM (20 µM), implyinga role for intracellular Ca2+ in mediating p38 activation.SB-203580 (10 µM) potentiated Isc responses toTG to 172.4 ± 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated withSB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs,respectively, Isc responses to TG and CCh weresignificantly greater than those observed with either inhibitor alone.We conclude that Ca2+-dependent agonists stimulate p38 MAPKin T84 cells by a mechanism involving intracellularCa2+, Src family kinases, and the EGFR. CCh-stimulated p38activation constitutes a similar, but distinct and complementary,antisecretory signaling pathway to that of ERK MAPK.

  相似文献   

18.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

19.
It is generally believed thatcAMP-dependent phosphorylation is the principle mechanism foractivating cystic fibrosis transmembrane conductance regulator (CFTR)Cl channels. However, we showed that activating Gproteins in the sweat duct stimulated CFTR Cl conductance(GCl) in the presence of ATP alone without cAMP. The objective of this study was to test whether the G protein stimulation of CFTR GCl is independent ofprotein kinase A. We activated G proteins and monitored CFTRGCl in basolaterally permeabilized sweat duct.Activating G proteins with guanosine5'-O-(3-thiotriphosphate) (10-100 µM) stimulated CFTRGCl in the presence of 5 mM ATP alone withoutcAMP. G protein activation of CFTR GCl requiredMg2+ and ATP hydrolysis (5'-adenylylimidodiphosphate couldnot substitute for ATP). G protein activation of CFTRGCl was 1) sensitive to inhibition bythe kinase inhibitor staurosporine (1 µM), indicating that theactivation process requires phosphorylation; 2) insensitive to the adenylate cyclase (AC) inhibitors 2',5'-dideoxyadenosine (1 mM)and SQ-22536 (100 µM); and 3) independent ofCa2+, suggesting that Ca2+-dependent proteinkinase C and Ca2+/calmodulin-dependent kinase(s) are notinvolved in the activation process. Activating AC with106 M forskolin plus 106 M IBMX (in thepresence of 5 mM ATP) did not activate CFTR, indicating that cAMPcannot accumulate sufficiently to activate CFTR in permeabilized cells.We concluded that heterotrimeric G proteins activate CFTR GCl endogenously via a cAMP-independent pathwayin this native absorptive epithelium.

  相似文献   

20.
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K+, Cl, and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl current (ICl,swell) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied ICl,swell and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted ICl,swell, but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl, taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane. caveolae; osmolyte; epithelial cell; chloride channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号