首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine if increased 5'-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5'-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5'-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5'-methylthioadenosine, 5'-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5'-Methylthiotubercidin acted as a potent inhibitor, but not a substrate, of the 5'-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5'-methylthioadenosine. However, in direct contrast to the 5'-methylthioadenosine effect, inhibition by 5'-methylthiotubercidin could not be completely reversed. These data suggest the 5'-methylthioadenosine phosphorylase plays an important role in reversing 5'-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5'-methylthiotubercidin are due to its resistance to 5'-methylthioadenosine phosphorylase degradation.  相似文献   

2.
Identification of osteoblast progenitors, with defined developmental capacity, would facilitate studies on a variety of parameters of bone development. We used expression of alkaline phosphatase (ALP) and the parathyroid hormone/parathyroid hormone-related protein receptor (PTH1R) as osteoblast markers in dual-color fluorescence activated cell sorting (FACS) to fractionate rat calvaria (RC) cells into ALP(-)PTH1R(-), ALP(+)PTH1R(-), ALP(-)PTH1R(+), and ALP(+)PTH1R(+) populations. These fractionated populations were seeded clonally (n = 96) or over a range of cell densities ( approximately 150-8,500 cell/cm(2); n = 3). Our results indicate that colony forming unit-osteoblast (CFU-O)/bone nodule-forming cells are found in all fractions, but the frequency of CFU-O and total mineralized area is different across fractions. Analysis of these differences suggests that ALP(-)PTH1R(-), ALP(-)PTH1R(+), ALP(+)PTH1R(-), and ALP(+)PTH1R(+) cell populations are separated in order of increasing bone formation capacity. Dexamethasone (dex) differentially increased the CFU-O number in the four fractions, with the largest stimulation in the ALP(-) cell populations. However, there was no significant difference in the number or size distribution of CFU-F (fibroblast) colonies that formed in vehicle versus dex. Finally, both cell autonomous and cell non-autonomous (i.e., inhibitory/stimulatory effects of cell neighbors) differentiation of osteoprogenitors was seen. Only the ALP(-)PTH1R(-) population was capable of forming nodules at the clonal level, at approximately 3- or 12-times the predicted frequency of unfractionated populations in dex or vehicle, respectively. These data suggest that osteoprogenitors can be significantly enriched by fractionation of RC populations, that assay conditions modify the osteoprogenitor frequencies observed and that fractionation of osteogenic populations is useful for interrogation of their developmental status and osteogenic capacity.  相似文献   

3.
 Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems. Accepted: 25 August 1998  相似文献   

4.
The role of IL-5 in IgA B cell differentiation   总被引:20,自引:0,他引:20  
IL-5 enhances secretion of IgA by B cells. The stage of B cell differentiation at which IL-5 enhances IgA secretion and the mechanism by which it exerts this effect are unknown. We examined these issues by separating Peyer's patch (PP) B cells into membrane IgA (mIgA)-positive and mIgA-negative cells with panning or cell sorting. When LPS was used to activate these cells, mIgA-positive PP B cells were induced by IL-5 (either as crude T cell supernatant or rIL-5 to secrete large amounts of IgA. In contrast mIgA-negative PP B cells showed no significant amount of IgA secretion with IL-5. In addition, rIL-5 did not cause expression of mIgA by mIgM-bearing B cells. The mechanism involved in enhancement of IgA secretion was evaluated by utilizing an ELISPOT assay to quantitate IgA secreting cells. Both unsorted PP B cells and mIgA-positive PP B cells, when incubated with IL-5, showed an increase in the number of IgA-secreting cells that was proportional to the increase in total secreted IgA. However, LPS-activated PP mIgA-positive B cells, when incubated with rIL-5, showed no increase in proliferation, as measured by [3H]thymidine incorporation indicating that the increase in IgA-secreting cells after incubation with IL-5 occurred not as a result of proliferation but rather through promotion of terminal differentiation. Thus, IL-5 acts as a differentiation factor on B cells which have already undergone isotype switch to IgA B cells, promoting differentiation into IgA-secreting cells with resultant increased IgA secretion.  相似文献   

5.
Bone morphogenetic proteins (BMPs) are factors that promote osteoblastic cell differentiation and osteogenesis. It is unknown whether BMPs may act on human osteoblastic cells by increasing immature cell growth and/or differentiation. We investigated the short- and long-term effects of recombinant human (rh)BMP-2 on cell growth and osteoblast phenotype in a new model of human neonatal pre-osteoblastic calvaria cells (HNC). In short-term culture, rhBMP-2 (20-100 ng/ml) inhibited DNA synthesis and increased alkaline phosphatase (ALP) activity without affecting osteocalcin (OC) production. When cultured for 3 weeks in the presence of ascorbic acid and inorganic phosphate to induce cell differentiation, HNC cells initially proliferated, type 1 collagen mRNA and protein levels rose, and then decreased, whereas OC mRNA and protein levels, and calcium accumulation into the extracellular matrix increased at 2 to 3 weeks. A transient treatment with rhBMP-2 (50 ng/ml) for 1 to 7 days which affected immature HNC cells, decreased cell growth, increased ALP activity and mRNA, and induced cells to express ALP, osteopontin, and OC at 7 days, as shown by immunocytochemistry. At 2 to 3 weeks, matrix mineralization was markedly increased despite cessation of treatment, and although OC and Col 1 mRNA and protein levels were not changed. A continuous treatment with rhBMP-2 for 3 weeks which affected immature and mature cells reduced cell growth, increased ALP activity and mRNA at 1 week and increased OC mRNA and protein levels and calcium content in the matrix at 3 weeks, indicating complete osteoblast differentiation. These results indicate that the differentiating effects of BMP-2 on human neonatal calvaria are dependent on duration of exposure. Although long-term exposure led to complete differentiation of OC-synthesizing osteoblasts, the primary effect of rhBMP-2 was to promote osteoblast marker expression in immature cells, which was sufficient to induce optimal matrix mineralization independently of cell growth and type 1 collagen expression.  相似文献   

6.
The antiproliferative effects of 5'-methylthioadenosine and the 5'-methylthioadenosine analogs, 5'-isobutylthioadenosine, 5'-deoxyadenosine and 5'-methylthiotubercidin were examined using two mouse cell lines, one 5'-methylthioadenosine phosphorylase-deficient the other containing 5'-methylthioadenosine phosphorylase. All of the compounds were found to be growth inhibitory to both cell lines, demonstrating that these compounds need not be degraded to exert their inhibitory effects. A correlation was observed between the potency of the growth inhibitory effect and the ability of the cells to degrade these compounds. 5'-Methylthioadenosine, 5'-deoxyadenosine and 5'-isobutylthioadenosine, all of which are substrates for the 5'-methylthioadenosine phosphorylase in vitro, were more growth inhibitory to the 5'-methylthioadenosine phosphorylase-deficient cells than to the 5'-methylthioadenosine phosphorylase-containing cells, whereas, the 7-deaza analog, 5'-methylthiotubercidin, a nondegradable inhibitor of the 5'-methylthioadenosine phosphorylase, was a more potent inhibitor of the 5'-methylthioadenosine phosphorylase-containing cell line. Due to the inhibition by 5'-methylthiotubercidin on 5'-methylthioadenosine phosphorylase in vitro the disposition of cellularly-synthesized 5'-methylthioadenosine was explored using both cell types. 5'-Methylthiotubercidin inhibited the accumulation of exogenous 5'-methylthioadenosine from 5'-methylthioadenosine phosphorylase-deficient cells with no effect on intracellular 5'-methylthioadenosine. In contrast, 5'-methylthiotubercidin caused a large accumulation of extracellular 5'-methylthioadenosine with a concomitant smaller increase intracellularly in 5'-methylthioadenosine phosphorylase-containing cells. That cellularly-synthesized 5'-methylthioadenosine as well as the cellular excretion of this nucleoside are altered in response to treatment with 5'-methylthiotubercidin suggests two possible sites at which 5'-methylthiotubercidin may exert its effect.  相似文献   

7.
An enzyme (5'-methylthioadenosine phosphorylase) that catalyzes the phosphorolytic cleavage of 5'-methylthioadenosine to 5-methylthioadenosine to 5-methylthioribose-1-phosphate and adenine was found in various rat tissues. Liver and lung had the highest enzyme activities and heart the lowest, most of the activity (greater than 90%) was recovered in soluble tissue fractions. The enzyme from rat lung was purified about 30-fold by pH treatment (NH4)2SO4 fractionation, and gel filtration. The enzyme did not require an added metal-ion for activity, and was not inhibited by EDTA. Many compounds were tested for their inhibitory effects; of these, ribose 1-phosphate, 2-deoxyribose 1-phosphate, fructose 1-phosphate, adenine and guanine were shown to inhibit. Kinetic patterns on reciprocal plots were linear as a function of the concentration of either 5'-methylthioadenosine or phosphate. More detailed kinetic studies suggested that the rat lung 5'-methylioadenosine phosphorylase catalyzes an equilibrium-ordered reaction, and that 5'-methylthioadenosine is the first substrate to bind and 5-methylthioribose-1-phosphate is the first product to be released.  相似文献   

8.
5'-Methylthioadenosine phosphorylase from rat liver has been purified 112-fold. A molecular weight of 90 000 for the enzyme was estimated from gel filtration on Sephadex G-150. The Km for 5'-methylthioadenosine was 4.7 . 10(-7) M, while the Km for phosphate was 2 . 10(-4) M. The products of the reaction were isolated and identified as adenine and 5-methylthioribose 1-phosphate. In addition to 5'-methylthioadenosine the nucleoside analogues 5'-ethylthioadenosine and 5'-n-propylthioadenosine also served as substrates for the enzyme. The 7-deaza analogue 5'-methylthiotubercidin was found to be an inhibitor of the reaction, but was inactive as a substrate.  相似文献   

9.
The wingless- and int-related proteins (Wnts) have an important role during embryonic development and limb patterning. To investigate their function during chondrocyte differentiation, we used NIH3T3 cells producing seven members of the Wnt family and secreted frizzled-related protein (sFRP-2) for co-culture experiments with the rat chondrogenic cell line pColl(II)-EGFP-5. Pilot experiments showed a negative effect of Wnt-7a on the proliferation of three rodent chondrogenic cell lines, RCJ3.1(C5.18), CFK-2, and C1. To establish a reporter system for chondrogenic differentiation we then produced a stably transfected chondrogenic cell line based on RCJ3.1(C5.18) for further experiments, which expresses green fluorescence protein (EGFP) under the collagen type II promoter (pColl(II)-EGFP-5). This cell line permits convenient observation of green fluorescence as a marker for differentiation in life cultures. The colony size of this cell line in agarose suspension cultures was reduced to 20-40% of control, when exposed to Wnt-1, 3a, 4, 7a, and 7b for 14 days. Similarly, reporter gene expression and the synthesis of cartilage-specific proteoglycans were inhibited by this group of Wnts. In contrast, pColl(II)-EGFP-5 cells exposed to Wnt-5a and Wnt-11 reached 140% of control, and reporter gene expression and proteoglycan synthesis were stimulated. The effects of Wnt-7a and Wnt-5a were additive in pColl(II)-EGFP-5 cells and some but not all Wnt effects were antagonized by the inhibition of proteoglycan sulfation with chlorate, by sFRP-2, which may modulate Wnt receptor binding, or by inhibitors of protein kinase C. These results suggest two functional Wnt subclasses that differentially regulate proliferation and chondrogenic differentiation in vitro which may have implications for cartilage differentiation in vivo. Since some, but not all Wnt effects were sensitive to inhibitors of proteoglycan synthesis or protein kinase C, multiple modes of signal transduction may be involved.  相似文献   

10.
The effect of castration and subsequent administration of 17 beta-estradiol and testosterone propionate on 5'-methylthioadenosine phosphorylase activity in rat target tissues was studied. Castration 34 days earlier resulted in a 95% reduction in ventral prostate 5'-methylthioadenosine phosphorylase activity and 16 days earlier in a 67% reduction in uterine 5'-methylthioadenosine phorphorylase activity. Four days of testosterone propionate administration stimulated ventral prostate 5'-methylthioadenosine phosphorylase activity 32% above castrate levels, which represented more than 50% of the intact control levels. 17 beta-Estradiol on the other hand stimulated uterine 5'-methylthioadenosine phosphorylase activity 35% above castrate controls within 24 h and with 3 days of continuous hormone treatment to within 97% of the intact control levels. However, castration and subsequent 17 beta-estradiol administration did not affect 5'-methylthioadenosine phosphorylase activity in rat liver and lung. Both prostate and uterine 5'-methylthioadenosine phosphorylase were shown to metabolize 5'-methylthioadenosine to 5-methylthioribose through a 5'-methylthioribose 1-phosphate intermediate. The data suggest aht 5'-methylthioadenosine is not allowed to accumulate in rat target tissues even under conditions which are known to stimulate polyamine synthesis.  相似文献   

11.
12.
In the coupling of ATP pyrophosphorolysis to Ca2+ transport in beef heart mitochondria, for each molecule of ATP cleaved, one proton is released and one Ca2+ is transported into the interior space. With the use of tritium labelled ATP, it could be shown that ATP is pyrophosphorylyzed into a species equivalent to Pi that moves inward, and a species equivalent to ADP that is extruded into the aqueous space on the exterior of the mitochondrion. The species equivalent to Pi has been identified as a negatively charged form of Pi (PO?) and the species equivalent to ADP as a positively charged form (ADP+). The inward flow of PO? is coupled to the inward flow of Ca2+ in 1:1 stoichiometry—a token that Ca2+ must enter in the form of Ca2+A?, where A? is a monovalent anion. During ATP pyrophosphorolysis protons are released on the I side and taken up on the M side—one proton for each molecule of ATP cleaved. The alkalinization of the matrix space leads to the deposition of Ca3(PO4)2 and to the extrusion of the two species released by this deposition (Pi, K+). Two thirds of the PO? is trapped as Ca3(PO4)2 in the matrix space and one third is extruded into the external space. The extrusion of K+ provides a mechanism by which protons can be continuously brought into the matrix space to sustain a high rate of coupled pyrophosphorolysis of ATP. The coupling pattern for Ca2+ transport driven by ATP pyrophosphorolysis is identical with the corresponding pattern for Ca2+ transport driven by electron transfer. This identity is suggestive that coupling mediated by the Fo-F1 system and coupling mediated by electron transfer complexes are mechanistically indistinguishable.  相似文献   

13.
Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.  相似文献   

14.
The effects of a number of nucleosides related to 5'-methylthioadenosine on the activities of S-adenosylhomocysteine hydrolase, 5'-methylthioadenosine phosphorylase, spermidine synthase and spermine synthase were investigated. Both 5'-methylthioadenosine and 5'-isobutylthioadenosine gave rise to an enzyme-activated irreversible inhibition of S-adenosylhomocysteine hydrolase, but 5'-methylthiotubercidin (5'-methylthio-7-deaza-adenosine), 5'-deoxy-5'-chloroformycin, 5'-ethylthio-2-fluoro-adenosine and 1,N6-etheno-5'-methylthioadenosine were totally ineffective in producing this inactivation. Of the nucleosides tested, only 5'-methylthioadenosine, 5'-methylthiotubercidin and 5'-isobutylthioadenosine were inhibitory towards the aminopropyltransferases responsible for the synthesis of spermine and spermidine. 5'-Methylthiotubercidin, 5'-deoxy-5'-chloroformycin and 5'-isobutylthioadenosine were inhibitors of the degradation of 5'-methylthioadenosine by 5'-methylthioadenosine phosphorylase, but only 5'-isobutylthioadenosine was also a substrate for this enzyme. These results suggest that the effects of 5'-isobutylthioadenosine of the cell may result from the combination of inhibitory actions on polyamine synthesis, 5'-methylthioadenosine degradation and S-adenosylhomocysteine degradation. The resulting increased concentrations of S-adenosylhomocysteine could bring about inhibition of methyltransferase reactions. A new convenient method for the assay of S-adenosylhomocysteine hydrolase in the direction of synthesis is described.  相似文献   

15.
5'-Deoxy-5'-methylthioadenosine phosphorylase (MTAase) was purified to homogeneity (10,000-fold) from bovine liver with a recovery of 12%. The pure protein shows a molecular weight of about 98,000 +/- 3,000 and is composed of three apparently identical subunits. Several physicochemical features have been investigated including hydrodynamic properties, amino acid composition, and secondary structure. In particular, the CD spectrum of the protein indicates a very low alpha-helical content and a large percent of beta-structure and random coil. The pure protein was used to raise specific rabbit antisera but, because of the scarce antigenic properties of the native enzyme, different chemically modified forms were prepared and employed as immunogens. Among the antibodies obtained, those to keyhole limpet hemocyanin-MTAase recognize both the native and the denatured enzyme and are also active against the human protein. Therefore, they were employed as a tool to investigate the occurrence of inactive forms of MTAase in two human malignant cell lines lacking this enzymatic activity. The results obtained with K562 and Jurkat cells indicate that the protein is absent in these phosphorylase-deficient cell lines.  相似文献   

16.
17.
The mechanisms that regulate the migration, proliferation and differentiation of osteogenic cell populations in vivo are poorly understood. Elucidation of these mechanisms is essential for an understanding of the basic processes that determine mineralized connective tissue homeostasis and regeneration. Bisphosphonates are known to regulate bone metabolism, in part through effects on osteoclastic resorption. Given previous data from other in vitro and in vivo investigations, we considered that they could also affect the proliferation and differentiation of osteoblasts in vivo. We tested this hypothesis using a bisphosphonate (ethane-1-hydroxy-1,1-bisphosphonate, HEBP, etidronate) and a calvarial wound model in which osteogenic differentiation and bone formation are coordinately induced by the wounding stimulus. Wounds through the calvarial bone were created in 20 male Wistar rats. After surgery, animals were treated every day for 1 or 2 weeks with HEBP or saline (controls) and five rats in each group were killed at 1 or 2 weeks following surgery. Cellular proliferation and clonal growth were assessed by 3H-thymidine labeling 1 h before death followed by radioautography. Cellular differentiation of osteogenic cell populations was determined by immunohistochemical staining for osteopontin and bone sialoprotein. Von Kossa and toluidine blue staining were used for the assessment of mineralization and osteoid formation, and for morphometric analysis of wound closure. At 1 and 2 weeks after surgery HEBP promoted wound closure (> twofold greater than controls, P < 0.001) and mineralized/osteoid tissue formation in the bony compartment of the wound (> 50% higher than saline controls, P < 0.05). In HEBP-treated animals there was a > 50% increase in intracellular staining for osteopontin in the endosteum-lined spaces adjacent to the wound (P < 0.05) and increased staining for osteopontin in the nascent bone at the wound margin (> 50% greater than controls, P < 0.05). However, there were reduced cell counts and labeling indices at stromal precursor sites (65% reduction compared to controls; P < 0.01). As HEBP increased osteopontin expression and osteoid/mineralized tissue formation but reduced the proliferation of precursor cells, we conclude that in addition to blockade of bone resorption and mineralization, this drug, at doses which also reversibly inhibit mineralization, may promote osteoblast differentiation as well.  相似文献   

18.

Background aims

Regenerative medicine strategies based on cell therapy are considered a promising approach to repair bone defects. The aims of this study were to evaluate the effect of subculturing on the osteogenic potential of osteoblasts derived from newborn rat calvaria and the effect of these osteoblasts on bone repair of rat calvaria defects.

Methods

Cells were obtained from 50 newborn rat calvaria, and primary osteoblasts (OB) were compared with first passage (OB-P1) in terms of osteogenic potential by assaying cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of the osteoblastic markers RUNX2, ALP, osteocalcin and bone sialoprotein. Then, 5-mm calvaria defects were created in 24 Wistar rats, and after 2 weeks, they were locally injected with 50 µL of phosphate-buffered saline containing either 5?×?106 osteoblasts (OB-P1, n?=?12) or no cells (control, n?=?12). Four weeks post-injection, the bone formation was evaluated by micro-computed tomography and histological analyses. Data were compared by analysis of variance, followed by the Student-Newman-Keuls's test or Student's t-test (P ≤ 0.05).

Results

OB-P1 showed high proliferation and ALP activity, and despite the reduced gene expression of osteoblastic markers and extracellular matrix mineralization compared with OB, they displayed osteogenic potential, being a good choice for injection into calvaria defects. The micro-tomographic and histological data showed that defects treated with OB-P1 presented higher bone formation compared with control defects.

Discussion

Our results indicate that cells derived from newborn rat calvaria retain osteoblastic characteristics after subculturing and that these osteoblasts stimulate bone repair in a rat calvaria defect model.  相似文献   

19.
The treatment of transformed rat cells with micromolar amounts of 5'deoxy 5'methyl thioadenosine induces rapid effects on the rate of methylation of DNA concomitantly with alterations of intracellular pools of S-adenosyl methionine and S-adenosyl homocysteine. Pulse chase labelling experiments indicate that 5'deoxy 5'methylthioadenosine does not inhibit the degradation of S-adenosyl homocysteine but inhibits the consumption of S-adenosyl methionine. In vitro transmethylation assays performed with heterologous DNA show that low doses of the thioethernucleoside do not significantly affect the DNA methyltransferase activity of cellular extracts. The biological role of 5'deoxy 5'methylthioadenosine, a natural molecule formed during the synthesis of polyamines is discussed.  相似文献   

20.
Cordycepin sensitive mutants of Saccharomyces cerevisiae, which are permeable to 5'-deoxy-5'-methylthioadenosine (MTA), were used to study the fate of the methylthioribose carbons of this purine nucleoside. Evidence is presented for the recycling of the methylthio group and part of the ribose portion of MTA in a biosynthetic pathway which leads to the synthesis of methionine. The main pathway involves the phosphorylytic cleavage of MTA by MTA phosphorylase yielding 5-methylthioribose 1-phosphate and adenine as products. Loss of the phosphate group of 5-methylthioribose 1-phosphate, concurrent with the rearrangement of the ribose carbons, leads to the synthesis of 2-keto-4-methylthiobutyric acid. In the final step of the sequence, 2-keto-4-methylthiobutyric acid is converted to methionine via transamination. Several compounds not directly associated with the biosynthesis of methionine were also isolated. These compounds, which may arise through the degradation of intermediates in the pathway, were: 5'-methylthioinosine, a deaminated catabolite of MTA; 5-methylthioribose, a result of the phosphorylysis of 5-methylthioribose 1-phosphate, and 3-methylthiopropionaldehyde, 3-methylthiopropionic acid and 2-hydroxy-4-methylthiobutyric acid, all arising from the catabolism of 2-keto-4-methylthiobutyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号