首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
CO dehydrogenase from Clostridium thermoaceticum is a nickel-containing enzyme that catalyzes both the reversible conversion of CO2 to CO (for incorporation into the carbonyl group of acetate) and the synthesis of acetyl-CoA from methyl corrinoid, CO, and CoASH. The latter activity is conveniently assayed by monitoring the exchange of [1-14C]acetyl-CoA (carbonyl group) with 12CO. Kinetic parameters for the highly oxygen sensitive exchange activity have been determined: Km (acetyl-CoA) = 600 microM; Vmax = 440 min-1. In addition, coenzyme A analogues have been tested as inhibitors of the exchange to probe the active site of the enzyme; each has no effect on the CO2 in equilibrium CO activity of CO dehydrogenase. Coenzyme A, the substrate for acetate biosynthesis, is a potent competitive inhibitor, KI = 7 microM. Comparison of this value with that for desulfo-CoA (KI = 6000 microM) suggests that a key mode of binding is through the sulfur atom, possibly to a metal site on the enzyme. The relatively high affinity of the enzyme for CoASH relative to acetyl-CoA is consistent with its proposed operation in the acetogenic direction. The differential sensitivity to oxygen and storage of the two activities of CO dehydrogenase as well as the contrasting effect of coenzyme A inhibitors suggests that acetate assemblage occurs at a site distinct from that for CO dehydrogenation.  相似文献   

2.
The purified carbon monoxide dehydrogenase from Clostridium thermoaceticum is the only protein required to catalyze an exchange reaction between carbon monoxide and the carbonyl group of acetyl-CoA. This exchange requires that the CO dehydrogenase bind the methyl, the carbonyl, and the CoA groups of acetyl-CoA, then equilibrate the carbonyl with CO in the solution and re-form acetyl-CoA. CoA is not necessary for the exchange and, in fact, inhibits the reaction. These studies support the view that CO dehydrogenase is the condensing enzyme that forms acetyl-CoA from its component parts. Carbon dioxide also exchanges with the C-1 of acetyl-CoA, but at a much lower rate than does CO. At 50 degrees C and pH 5.3, the optimal pH, the turnover number is 70 mol of CO exchanged per min/mol of enzyme. Low potential electron carriers are stimulatory. The Km app for stimulation by ferredoxin is 50-fold less than the value for flavodoxin. Neither ATP or Pi stimulate the exchange. The EPR spectrum of the CO-reacted enzyme is markedly changed by binding of CoA or acetyl-CoA. Arginine residues of the CO dehydrogenase appear to be involved in the active site, possibly by binding acetyl-CoA. Mersalyl acid, methyl iodide, 5,5-dithiobis-(2-nitrobenzoate), and sodium dithionite inhibit the exchange reaction. A scheme is presented to account for the role of CO dehydrogenase in the exchange reaction and in the synthesis of acetate.  相似文献   

3.
The ability of acetyl coenzyme A synthesizing carbon monoxide dehydrogenase isolated from Clostridium thermoaceticum to catalyze the exchange of [3'-32P]coenzyme A with acetyl coenzyme A is studied. This exchange is found to have a rate exceeding that of the acetyl coenzyme A carbonyl exchange also catalyzed by CO dehydrogenase ([1-14C]acetyl coenzyme A + CO in equilibrium acetyl coenzyme A + 14CO). These two exchanges are diagnostic of the ability of CO dehydrogenase to synthesize acetyl coenzyme A from a methyl group, coenzyme A, and carbon monoxide. The kinetic parameters for the coenzyme A exchange have been determined: Km(acetyl coenzyme A) = 1500 microM, Km(coenzyme A) = 50 microM, and Vmax = 2.5 mumol min-1 mg-1. Propionyl coenzyme A is shown to be a substrate (Km approximately 5 mM) for the coenzyme A exchange, with a rate 1/15 that of acetyl coenzyme A, but is not a substrate for the carbonyl exchange. CO dehydrogenase capable of catalyzing both these two exchanges, and the oxidation of CO to CO2, is isolated as a complex of molecular weight 410,000 consisting of three proteins in an alpha 2 beta 2 gamma 2 stoichiometry. The proposed gamma subunit, not previously reported as part of CO dehydrogenase, copurifies with the enzyme and has the same molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the disulfide reductase previously separated from CO dehydrogenase in a final chromatographic step.  相似文献   

4.
Carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum plays a central role in the newly discovered acetyl-CoA pathway [Wood, H.G., Ragsdale, S.W., & Pezacka, E. (1986) FEMS Microbiol. Rev. 39, 345-362]. The enzyme catalyzes the formation of acetyl-CoA from methyl, carbonyl, and CoA groups, and it has specific binding sites for these moieties. In this study, we have determined the role of tryptophans at these subsites. N-Bromosuccinimide (NBS) oxidation of the exposed and reactive tryptophans (5 out of a total of approximately 20) of CODH at pH 5.5 results in the partial inactivation of the exchange reaction (approximately 50%) involving carbon monoxide and the carbonyl group of the acetyl-CoA. Also, about 70% of the acetyl-CoA synthesis was abolished as a result of NBS modification. The presence of CoA (10 microM) produced complete protection against the partial inhibition of the exchange activity and the overall synthesis of acetyl-CoA caused by NBS. Additionally, none of the exposed tryptophans of CODH was modified in the presence of CoA. Ligands such as the methyl or the carbonyl groups did not afford protection against these inactivations or the modification of the exposed tryptophans. A significant fraction of the accessible fluorescence of CODH was shielded in the presence of CoA against acrylamide quenching. On the basis of these observations, it appears that certain tryptophans are involved at or near the CoA binding site of CODH.  相似文献   

5.
Two purified fractions from Clostridium thermoaceticum are shown to catalyze the following reaction: CO + CH3THF + CoA ATP leads to CH3COCoA + THF. The methyltetrahydrofolate (CH3THF) gives rise to the methyl group of the acetyl-coenzyme A (CoA) and the carbon monoxide (CO) and CoA to its carboxyl thio ester group. The role of ATP is unknown. One of the protein fractions (F2) is a methyltransferase, whereas the other fraction (F3) contains CO dehydrogenase and a methyl acceptor which is postulated to be a corrinoid enzyme. The methyltransferase catalyzes the transfer of the methyl group to the methyl acceptor, and the CO is converted to a formyl derivative by the CO dehydrogenase. By a mechanism that is as yet unknown, the formyl derivative in combination with CoA and the methyl of the methyl acceptor are converted to acetyl-CoA. It is also shown that fraction F3 catalyzes the reversible exchange of 14C from [1-14C]acetyl-CoA into 14CO and that ATP is required, but not the methyltransferase. It is proposed that these reactions are part of the mechanism which enables certain autotrophic bacteria to grow on CO. It is postulated that CH3THF is synthesized from CO and tetrahydrofolate which then, as described above, is converted to acetyl-CoA. The acetyl-CoA then serves as a precursor in other anabolic reactions. A similar autotropic pathway may occur in bacteria which grow on carbon dioxide and hydrogen.  相似文献   

6.
Many anaerobic bacteria fix CO2 via the acetyl-CoA pathway. Carbon monoxide dehydrogenase (CODH), a key enzyme in the pathway, condenses a methyl group, a carbonyl group from CO, CO2, or the carboxyl group of pyruvate, and CoA to form acetyl-CoA. When treated with CO, CODH exhibits an EPR signal which results from an organometallic complex containing nickel, at least 3 iron, and CO and has been referred to as the NiFeC signal. Although this EPR signal has been presumed to be the spectroscopic signature of the enzyme-bound C-1 precursor of the carbonyl group of acetyl-CoA, its catalytic relevance had not been rigorously studied. We have demonstrated the catalytic competence of this NiFeC species by showing that the rate of formation of the NiFeC EPR signal is faster than the rate of an isotope exchange reaction between CO and acetyl-CoA, a partial reaction in the overall synthesis. Generation of the NiFeC signal in the absence of CO by acetyl-CoA has been demonstrated and requires a one-electron reduction at a midpoint potential of -541 mV versus the standard hydrogen electrode. In addition, we have observed and characterized an isotope exchange reaction between the carbonyl group of acetyl-CoA and the carbonyl group of the NiFeC complex, indicating that the C in the NiFeC complex is in the form of CO. These combined results demonstrate that the NiFeCO complex exhibits the characteristics expected of the precursor of the carbonyl group of acetyl-CoA.  相似文献   

7.
Carbon monoxide dehydrogenase (CODH) is the key enzyme of autotrophic growth with CO or CO2 and H2 by the acetyl-CoA pathway. The enzyme from Clostridium thermoaceticum catalyzes the formation of acetyl-CoA from the methyl, carbonyl, and CoA groups and has separate binding sites for these moieties. In this study, we have determined the role of arginine residues in binding of CoA by CODH. Phenylglyoxal, an arginine-specific reagent, inactivated CODH, and CoA afforded about 80-85% protection against this inactivation. The other ligands, such as the carbonyl and the methyl groups, gave no protection. By circular dichroism, it was shown that the loss of activity is not due to extensive structural changes in CODH. Earlier, we showed that tryptophan residues are located at the CoA binding site of CODH [Shanmugasundaram, T., Kumar, G. K., & Wood, H. G. (1988) Biochemistry 27, 6499-6503]. A comparison of the fluorescence spectra of the native and phenylglyoxal-modified enzymes indicates that the reactive arginine residues appear to be located close to fluorescing tryptophans. Fluorescence spectral studies with CoA analogues or its components showed that CoA interacts with the tryptophan(s) of CODH through its adenine moiety. In addition, evidence is presented that the arginines interact with the pyrophosphate moiety of CoA.  相似文献   

8.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

9.
The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide.  相似文献   

10.
Carbon monoxide dehydrogenase (CODH) plays a key role in acetate synthesis by the acetogenic bacterium, Clostridium thermoaceticum. Acetobacterium woodii, like C. thermoaceticum contains high levels of CODH. In this work we show that crude extracts of A. woodii synthesize acetate from methyl tetrahydrofolate or methyl iodide, carbon monoxide and coenzyme A (CoA). The purified CODH from A. woodii catalyzes an exchange reaction between CO and the carbonyl group of acetyl-CoA even faster than the C. thermoaceticum enzyme, indicating the CODH of A. woodii, like that of C. thermoaceticum is an acetyl-CoA synthetase. Fluorescence and EPR studies further support this postulate by demonstrating that CODH binds CoA near the CO binding site involving a tryptophan residue. The UV absorption spectra and the amino acid compositions of A. woodii and C. thermoaceticum CODHs are very similar. Evidence is presented using purified enzymes from A. woodii that the synthesis of acetyl-CoA occurs by a pathway similar to that utilized by C. thermoaceticum.  相似文献   

11.
CO dehydrogenase/acetyl-CoA synthase (CODH/ACS), a key enzyme in the Wood-Ljungdahl pathway of anaerobic CO(2) fixation, is a bifunctional enzyme containing CODH, which catalyzes the reversible two-electron oxidation of CO to CO(2), and ACS, which catalyzes acetyl-CoA synthesis from CoA, CO, and a methylated corrinoid iron-sulfur protein (CFeSP). ACS contains an active site nickel iron-sulfur cluster that forms a paramagnetic adduct with CO, called the nickel iron carbon (NiFeC) species, which we have hypothesized to be a key intermediate in acetyl-CoA synthesis. This hypothesis has been controversial. Here we report the results of steady-state kinetic experiments; stopped-flow and rapid freeze-quench transient kinetic studies; and kinetic simulations that directly test this hypothesis. Our results show that formation of the NiFeC intermediate occurs at approximately the same rate as, and its decay occurs 6-fold faster than, the rate of acetyl-CoA synthesis. Kinetic simulations of the steady-state and transient kinetic results accommodate the NiFeC species in the mechanism and define the rate constants for the elementary steps in acetyl-CoA synthesis. The combined results strongly support the kinetic competence of the NiFeC species in the Wood-Ljungdahl pathway. The results also imply that the methylation of ACS occurs by attack of the Ni(1+) site in the NiFeC intermediate on the methyl group of the methylated CFeSP. Our results indicate that CO inhibits acetyl-CoA synthesis by inhibiting this methyl transfer reaction. Under noninhibitory CO concentrations (below 100 microM), formation of the NiFeC species is rate-limiting, while at higher inhibitory CO concentrations, methyl transfer to ACS becomes rate-limiting.  相似文献   

12.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

13.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

14.
Acetogenic bacteria, as determined with Clostridium thermoaceticum, synthesize acetate by the acetyl-CoA pathway which involves the reduction of CO2 to a methyl group and then combination of the methyl with CoA and a carbonyl group formed from CO or CO2 (Wood, H.G., Ragsdale, S.W., and Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18). Carbon monoxide dehydrogenase (CODH), the key enzyme in this pathway not only catalyzes the oxidation of CO to CO2 but also the final step, the synthesis of acetyl-CoA from a methyl group, CO, and CoA. Previously, it has been shown that ferredoxin can stimulate exchange of CO with CH3 14COSCoA (Ragsdale, S.W., and Wood, H.G. (1985) J. Biol. Chem. 260, 3970-3977). In the present study, it has been observed that ferredoxin and CODH can form an electrostatically stabilized complex. In order to identify the ferredoxin binding region on CODH, the ferredoxin and CODH were cross-linked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked CODH-ferredoxin adduct was enzymatically as active as the uncross-linked complex. The native CODH and cross-linked CODH-ferredoxin complex were subjected to cyanogen bromide cleavage. By comparison of the high-performance liquid chromatography peptide profiles, it was observed that the mobility of at least one peptide is altered in the CODH-ferredoxin cross-linked complex. The peptide was identified with residues 229-239 of the alpha-subunit of CODH.  相似文献   

15.
1. Purified 3-hydroxy-3-methylglutaryl-CoA synthase from baker's yeast (free from acetoacetyl-CoA thiolase activity) catalysed an exchange of acetyl moiety between 3'-dephospho-CoA and CoA. The exchange rate was comparable with the overall velocity of synthesis of 3-hydroxy-3-methylglutaryl-CoA. 2. Acetyl-CoA reacted with the synthase, giving a rapid ;burst' release of CoA proportional in amount to the quantity of enzyme present. The ;burst' of CoA was released from acetyl-CoA, propionyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA) but not from acetoacetyl-CoA, hexanoyl-CoA, dl-3-hydroxy-3-methylglutaryl-CoA, or other derivatives of glutaryl-CoA. 3. Incubation of 3-hydroxy-3-methylglutaryl-CoA synthase with [1-(14)C]acetyl-CoA yielded protein-bound acetyl groups. The K(eq.) for the acetylation was 1.2 at pH7.0 and 4 degrees C. Acetyl-labelled synthase was isolated free from [1-(14)C]acetyl-CoA by rapid gel filtration at pH6.1. The [1-(14)C]acetyl group was removed from the protein by treatment with hydroxylamine, CoA or acetoacetyl-CoA but not by acid. When CoA or acetoacetyl-CoA was present the radioactive product was [1-(14)C]acetyl-CoA or 3-hydroxy-3-methyl-[(14)C]glutaryl-CoA respectively. 4. The isolated [1-(14)C]acetyl-enzyme was slowly hydrolysed at pH6.1 and 4 degrees C with a first-order rate constant of 0.005min(-1). This rate could be stimulated either by raising the pH to 7.0 or by the addition of desulpho-CoA. 5. These properties are interpreted in terms of a mechanism in which 3-hydroxy-3-methyl-glutaryl-CoA synthase is acetylated by acetyl-CoA to give a stable acetyl-enzyme, which then condenses with acetoacetyl-CoA yielding a covalent derivative between 3-hydroxy-3-methylglutaryl-CoA and the enzyme which is then rapidly hydrolysed to free enzyme and product.  相似文献   

16.
3-Chloropropionyl coenzyme A (CoA) irreversibly inhibits rat mammary gland fatty acid synthase. Enzyme inactivation proceeds with first-order kinetics. NADPH (150 microM) as well as acetyl-CoA (500 microM) affords protection against inactivation, suggesting that the inhibitor is active site directed. In contrast, malonyl-CoA (500 microM) offers little protection. With chloro [1-14C]propionyl-CoA, stoichiometries of modification that approach one per enzyme protomer (240 kilodaltons) have been measured. When chloropropionyl-[3'-32P]CoA is used for inactivation, modification stoichiometries are less than 10% of the value observed in the 14C labeling experiments, suggesting that acylation of the enzyme occurs. Radioactivity remains associated with the 14C-labeled protein after performic acid oxidation, indicating that another linkage, in addition to the thio ester adduct, is formed during inactivation. Recovery of [( 14C]carboxyethyl)cysteine from digests of the inactivated enzyme indicates that alkylation of an active site cysteine occurs. The cysteamine sulfhydryl of the acyl carrier peptide is clearly not the site of modification. Loss of overall enzyme activity is tightly linked to decreases in the ketoacyl synthase partial reaction. This observation, coupled with the differential protection measured with acetyl-CoA and malonyl-CoA, suggests that the reagent modifies a residue at the active site involved in condensation. While inactivated enzyme shows good ketoacyl reductase activity when S-(acetoacetyl)-N-acetylcysteamine is used as a substrate, only poor activity for this partial reaction is measured when acetoacetyl-CoA is the substrate. This implies that the function of the acyl carrier peptide (ACP) is impaired during the inactivation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

18.
Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD], 20 microM) and low-affinity (KD, 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.  相似文献   

19.
The Michaelis constant values for the highly purified pyruvate dehydrogenase complex (PDC) from human heart are 25, 13 and 50 microM for pyruvate, CoA and NAD, respectively. Acetyl-CoA produces a competitive inhibition of PDC (Ki = 35 microM) with respect to CoA, whereas NADH produces the same type of inhibition with respect to NAD (Ki = 36 microM). The oxoglutarate dehydrogenase complex (OGDC) from human heart has active sites with two different affinities for 2-oxoglutarate ([S]0.5 of 30 and 120 microM). ADP (1 mM) decreases the [S]0.5 values by a half. The inhibition of OGDC (Ki = 81 microM) by succinyl-CoA is of a competitive type with respect to CoA (Km = 2.5 microM), whereas that of NADH (Ki = 25 microM) is of a mixed type with respect to NAD (Km = 170 microM).  相似文献   

20.
The 3-hydroxypropionate cycle is a new autotrophic CO(2) fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H(+) --> malonate semialdehyde + NADP(+) + CoA and malonate semialdehyde + NADPH + H(+) --> 3-hydroxypropionate + NADP(+). The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an alpha(2) composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg(2+) and Fe(2+) stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent K(m) values of 30 microM malonyl-CoA and 25 microM NADPH and a turnover number of 25 s(-1) subunit(-1). The specific activity in autotrophically grown cells was 0.08 micromol of malonyl-CoA reduced min(-1) (mg of protein)(-1), compared to 0.03 micromol min(-1) (mg of protein)(-1) in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号