共查询到10条相似文献,搜索用时 192 毫秒
1.
Identification of the trans-acting Rep proteins of adeno-associated virus by antibodies to a synthetic oligopeptide. 总被引:3,自引:40,他引:3
下载免费PDF全文

Prior genetic analysis provided evidence for trans-acting regulatory proteins (Rep) coded by the left-hand open reading frame (orf-1) of adeno-associated virus (AAV). We have used immunoblotting analysis to identify four protein products of orf-1. Antibodies elicited against an oligopeptide encoded by orf-1 were reacted with extracts of cells that were infected with AAV or transfected with AAV recombinant vectors in the presence or absence of helper adenovirus. The antibody recognized four polypeptides with apparent molecular weights of 78,000, 68,000, 52,000, and 40,000. The 78,000-dalton (78K) (Rep78) and 68K (Rep68) proteins appear to be encoded by the unspliced 4.2-kilobase (kb) and spliced 3.9-kb mRNAs, respectively, transcribed from the p5 promoter. The 52K (Rep52) and 40K (Rep40) proteins appear to be the products of the unspliced 3.6-kb and the spliced 3.3-kb mRNAs, respectively, transcribed from the p19 promoter. Rigorous identification of Rep68 as an AAV-coded protein is compromised by a cross-reacting cellular protein of similar size. All four proteins were expressed in the human cell lines 293, HeLa, HT29, and A549 infected with AAV together with adenovirus. Rep78 and Rep52 were detected at lower levels in cells infected with AAV at high multiplicity in the absence of adenovirus. Human 293 cells transfected with a recombinant AAV vector (pAV2) also expressed Rep proteins in the presence or absence of adenovirus. Mutations introduced into the Rep region of pAV2 further identified the Rep proteins. The amount of each Rep protein varied between nuclear and cytoplasmic extracts, but all four proteins accumulated during the lytic cycle of the viral infection. Other studies have indicated that the Rep proteins have independent trans-acting functions in viral DNA replication and negative and positive regulation of gene expression. Correlation of each trans-acting function with individual Rep proteins will be facilitated with the antibodies described herein. 相似文献
2.
3.
The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication 总被引:1,自引:0,他引:1
下载免费PDF全文

Stracker TH Cassell GD Ward P Loo YM van Breukelen B Carrington-Lawrence SD Hamatake RK van der Vliet PC Weller SK Melendy T Weitzman MD 《Journal of virology》2004,78(1):441-453
Adeno-associated virus (AAV) type 2 is a human parvovirus whose replication is dependent upon cellular proteins as well as functions supplied by helper viruses. The minimal herpes simplex virus type 1 (HSV-1) proteins that support AAV replication in cell culture are the helicase-primase complex of UL5, UL8, and UL52, together with the UL29 gene product ICP8. We show that AAV and HSV-1 replication proteins colocalize at discrete intranuclear sites. Transfections with mutant genes demonstrate that enzymatic functions of the helicase-primase are not essential. The ICP8 protein alone enhances AAV replication in an in vitro assay. We also show localization of the cellular replication protein A (RPA) at AAV centers under a variety of conditions that support replication. In vitro assays demonstrate that the AAV Rep68 and Rep78 proteins interact with the single-stranded DNA-binding proteins (ssDBPs) of Ad (Ad-DBP), HSV-1 (ICP8), and the cell (RPA) and that these proteins enhance binding and nicking of Rep proteins at the origin. These results highlight the importance of intranuclear localization and suggest that Rep interaction with multiple ssDBPs allows AAV to replicate under a diverse set of conditions. 相似文献
4.
5.
Colocalization of adeno-associated virus Rep and capsid proteins in the nuclei of infected cells.
下载免费PDF全文

The mechanism of adeno-associated virus (AAV) DNA replication was characterized both genetically and biochemically. In this study, we used monoclonal and polyclonal antibodies to examine the AAV p5 (Rep78 and Rep68) and p19 (Rep52 and Rep40) proteins in infected cells. By overexpressing a truncated Rep78 protein in Escherichia coli, we obtained monoclonal antibody anti-78/68, which is specific for the p5 Rep proteins, and monoclonal antibody anti-52/40, which recognized both the p5 and p19 Rep proteins. In single-fluorochrome indirect immunofluorescence labeling experiments, the viral Rep proteins were localized in distinct intranuclear foci. Analysis of AAV proteins by double-fluorochrome indirect immunofluorescence experiments demonstrated that (i) all four AAV Rep proteins occupied the same intranuclear compartments and (ii) the Rep and capsid proteins colocalized in the nuclei of infected cells. These results suggest that replication centers similar to those established by other viruses exist for AAV. These reagents should provide a useful tool for further delineation of the mechanism of AAV replication in vitro. 相似文献
6.
Adeno-associated virus (AAV), unique among animal viruses in its ability to integrate into a specific chromosomal location, is a promising vector for human gene therapy. AAV Replication (Rep) protein is essential for viral replication and integration, and its amino terminal domain possesses site-specific DNA binding and endonuclease activities required for replication initiation and integration. This domain displays a novel endonuclease fold and demonstrates an unexpected structural relationship to other viral origin binding proteins such as the papillomavirus E1 protein and the SV40 T antigen. The active site, located at the bottom of a positively charged cleft, is formed by the spatial convergence of a divalent metal ion and two conserved sequence motifs that define the rolling circle replication superfamily. 相似文献
7.
8.
Biologically active Rep proteins of adeno-associated virus type 2 produced as fusion proteins in Escherichia coli. 总被引:4,自引:17,他引:4
下载免费PDF全文

J A Chiorini M D Weitzman R A Owens E Urcelay B Safer R M Kotin 《Journal of virology》1994,68(2):797-804
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR. 相似文献
9.
10.
Adeno-associated virus type 2 Rep endonuclease activity is necessary for both viral DNA replication and site-specific integration of the viral genome into human chromosome 19. The biochemical activities required for site-specific endonuclease activity (namely specific DNA binding and transesterification activity) have been mapped to the amino-terminal domain of the AAV2 Rep protein. The amino-terminal 208 amino acids are alone sufficient for site-specific endonuclease activity, and nicking by this domain is metal-dependent. To identify this metal-binding site, we have employed a cysteine mutagenesis approach that targets conserved acidic amino acids. By using this technique, we provide functional biochemical data supporting a role for glutamate 83 in the coordination of metal ions in the context of Rep endonuclease activity. In addition, our biochemical data suggest that glutamate 164, although not involved in the coordination of metal ions, is closely associated with the active site. Thus, in lieu of a crystal structure for the AAV type 2 amino-terminal domain, our data corroborate the recently published structural studies of the AAV type 5 endonuclease and suggest that although the two enzymes are not highly conserved with respect to the AAV family, their active sites are highly conserved. 相似文献