首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel member of the neuron-specific protein (NSP) or newly named reticulon (RTN) gene family was isolated during a subtraction cloning between macula and peripheral retina. The mRNA for this NSP/RTN-like gene is approximately threefold more abundant in macula than in peripheral retina. The cDNA is 2527 bp long and contains an open reading frame of 236 amino acids. The deduced peptide shows a strong similarity to the NSP/RTN and tropomyosin-like gene families but it is clearly a novel member. The gene contains seven exons and spans more than 15 kb. The gene was localized to chromosome 11q13 between markers D11S4535 and D11S4627 using somatic cell hybrid panels. Southern blot analysis identified the presence of a pseudogene(s) that was subsequently localized to chromosome 4. Multitissue Northern blot analysis found this gene to be widely expressed in human tissues with the highest expression in the brain. We are calling this gene RTN3 to reflect the newly proposed nomenclature.  相似文献   

2.
From the data presented in this report, the human LDHC gene locus is assigned to chromosome 11. Three genes determine lactate dehydrogenase (LDH) in man. LDHA and LDHB are expressed in most somatic tissues, while expression of LDHC is confined to the germinal epithelium of the testes. A human LDHC cDNA clone was used as a probe to analyze genomic DNA from rodent/human somatic cell hybrids. The pattern of bands with LDHC hybridization is easily distinguished from the pattern detected by LDHA hybridization, and the LDHC probe is specific for testis mRNA. The structural gene LDHA has been previously assigned to human chromosome 11, while LDHB maps to chromosome 12. Studies of pigeon LDH have shown tight linkage between LDHB and LDHC leading to the expectation that these genes would be syntenic in man. However, the data presented in this paper show conclusively that LDHC is syntenic with LDHA on human chromosome 11. The terminology for LDH genes LDHA, LDHB, and LDHC is equivalent to Ldh1, Ldh2, and Ldh3, respectively.  相似文献   

3.
We have investigated the expression of a recently described, solitary human H3 histone gene. Using RNase protection assays, the corresponding mRNA could only be detected in RNA preparations from human testis, whereas several human cell lines and somatic tissues did not exhibit expression of this gene.In situhybridization of sections from human testis revealed expression to be confined to primary spermatocytes. In addition to H1t, this novel H3 gene, which is located on chromosome 1, is the second tissue-specific human histone gene that has been found to be expressed solely in the testis.  相似文献   

4.
A panel of somatic cell hybrid cell lines containing different parts of human chromosome 20 and fluorescence in situ hybridization have been used to physically localize markers to human chromosome 20. Through these complementary approaches and genetic linkage analysis, D20S16, which is closely linked to the maturity onset diabetes of the young (MODY) locus, was mapped to band 20q12 --> q13.1. The gene for growth hormone-releasing factor (GHRF) was physically mapped and reassigned to 20q11, suggesting that GHRF plays no direct role in MODY. In addition, the genes for the chromosome 20-linked glycogen phosphorylase (GYPB) and the bone morphogenetic protein (BMP2A) have been assigned to chromosome 20p, and the interleukin-6-dependent DNA-binding protein (TCF5) has been assigned to 20q12 --> q13 by hybridization to genomic DNA from the panel of somatic cell hybrid cell lines. These approaches are useful for rapid localization of candidate genes for MODY and other DNA markers mapped to chromosome 20.  相似文献   

5.
Small nuclear ribonucleoproteins (snRNPs), which are composed of various U RNAs and several proteins, are components of the mRNA splicing apparatus. The snRNP protein E is encoded by a multigene family which consists of a single expressed gene and several processed pseudogenes. We have used somatic cell hybridization, in situ hybridization, and linkage analysis to both physically and genetically map the expressed E protein gene to human chromosome 1q25-43, with the most probable location being band 1q32. In addition to the snRNP E protein gene, two other snRNP components--the U1 RNA true multigene family and a group of class I U1 pseudogenes--are located on human chromosome 1.  相似文献   

6.
7.
From the data presented in this report, the human LDHC gene locus is assigned to chromosome 11. Three genes determine lactate dehydrogenase (LDH) in man. LDHA and LDHB are expressed in most somatic tissues, while expression of LDHC is confined to the germinal epithelium of the testes. A human LDHC cDNA clone was used as a probe to analyze genomic DNA from rodent/human somatic cell hybrids. The pattern of bands with LDHC hybridization is easily distinguished from the pattern detected by LDHA hybridization, and the LDHC probe is specific for testis mRNA. The structural gene LDHA has been previously assigned to human chromosome 11, while LDHB maps to chromosome 12. Studies of pigeon LDH have shown tight linkage between LDHB and LDHC leading to the expectation that these genes would be syntenic in man. However, the data presented in this paper show conclusively that LDHC is syntenic with LDHA on human chromosome 11. The terminology for LDH genes LDHA, LDHB, and LDHC is equivalent to Ldhl, Ldh2, and Ldh3, respectively.  相似文献   

8.
This report describes the identification of a cDNA encoding STK13, a third human protein kinase related to theDrosophilaAurora and the budding yeast Ipl1 kinases. After screening of a human placental cDNA library with aXenopus laeviscDNA encoding the pEg2 protein kinase and 5′ RACE on testis mRNA, a full-length cDNA was isolated. The chromosomal localization of STK13 on 19q13.3–ter between the markers D19S210 and D19S218 was established by a combination of somatic cell and radiation hybrid panel PCR screening. The localization of STK13 on human chromosome 19 was confirmed by fluorescencein situhybridization (FISH) using a genomic clone containing STK13 as a probe.  相似文献   

9.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

10.
An inv(11)(q13.5;q25) inversion was previously identified in a 9-month-old male patient with complex cyanotic heart defects, altered lung lobation, symmetric liver, and abnormally lobulated spleen (polysplenia). This chromosomal rearrangement was inherited from the phenotypically normal father. We termed these regions DHTX-A (disrupted in heterotaxy)-- A at 11q13.5 and DHTX-B at 11q25. Here, we report the isolation and characterization of the inversion breakpoints and the gene that is disrupted by the DHTX-A breakpoint. The putative DHTX is identical to the UVRAG gene, which was originally identified as a gene that complements the UV sensitivity of xeroderma pigmentosum complementation group C. The 4-kb mRNA was found to be encoded by a large gene, at least 300 kb long, composed of 15 exons. The function of the gene product remains largely unknown. However, the near central portion of the UVRAG protein is predicted to contain a coiled-coil domain, which has been implicated in mediating protein-protein interactions. Southern analyses and fluorescence in situ hybridization (FISH) revealed that the DHTX-A breakpoint in the patient and his father lies within the intron between exons 6 and 7 of UVRAG. Northern blot analysis indicated strong expression in human fetal and adult tissues and in mouse embryonic day-7 and adult tissues, respectively. Whole mount in situ hybridization also showed that the Uvrag gene is expressed in the presomite-stage embryo. Several hypotheses are discussed to explain the relationship between the chromosomal inversion and the accompanying phenotypes.  相似文献   

11.
The chromosomal location of an 8.2-kb genomic fragment encompassing a cluster of four human tRNA genes has been determined by three complementary methods including Southern analysis of human/rodent somatic cell hybrids, in situ hybridization, and genetic linkage analysis. This tRNA cluster (TRP1, TRP2, and TRL1) is located near the T-cell receptor alpha (TCRA) locus at 14q11, and several RFLPs were detected at this site. These RFLPs and those at the TCRA and MYH7 (cardiac beta-MHC gene) loci have been used to type all informative members of the CEPH pedigrees. This has permitted ordering of these three gene loci and two anonymous probes (D14S26 and D14S25) in a 20-cM interval just below the centromere of chromosome 14. Based upon the chromosomal location and the polymorphisms at this site, one or more members of this gene cluster could serve as a useful anchor locus on chromosome 14.  相似文献   

12.
The product of the mouse Rec-1 locus is an integral membrane protein that determines susceptibility to infection by murine ecotropic retroviruses. Recently it has been determined that its role in normal cell metabolism is transport of the cationic amino acids, arginine, lysine, and ornithine across the plasma membrane. Southern blot analysis of genomic DNA from a panel of 48 mouse-human somatic cell hybrids assigned the human version of this gene, ATRC1, to chromosome 13. Chromosomal in situ hybridization localized the gene to 13q12-q14. A restriction fragment length polymorphism (RFLP) was detected with TaqI. There were two alleles with frequencies of 0.29 and 0.71. Pairwise linkage analysis established linkage between ATRC1 and ATP1AL1, D13S1, D13S6, D13S10, D13S11, D13S21, D13S22, D13S33, D13S36, and D13S37. Multilocus linkage analysis of five of the loci indicated that the most likely order of loci in this region was D13S11-ATP1AL1-ATRC1-D13S6-D13S33.  相似文献   

13.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with a high penetrance characterized by tumors of the parathyroid glands, the endocrine pancreas, and the anterior pituitary. TheMEN1gene, a putative tumor suppressor gene, has been mapped to a 3- to 8-cM region in chromosome 11q13 but it remains elusive as yet. We have combined the efforts and resources from four laboratories to form the European Consortium on MEN1 with the aims of establishing the genetic and the physical maps of 11q13 and of further narrowing the MEN1 region. A 5-Mb integrated map of the region was established by fluorescencein situhybridization on both metaphase chromosomes and DNA fibers, by hybridization to DNA from somatic cell hybrids containing various parts of human chromosome 11, by long-range restriction mapping, and by characterization of YACs and cosmids. Polymorphic markers were positioned and ordered by physical mapping and genetic linkage in 86 MEN1 families with 452 affected individuals. Two critical recombinants identified in two affected cases placed theMEN1gene in an ≈2-Mb region aroundPYGM,flanked by D11S1883 and D11S449.  相似文献   

14.
Human acid sphingomyelinase (SMPD1) is the lysosomal phosphodiesterase that cleaves sphingomyelin to ceramide and phosphocholine. The deficient activity of SMPD1 is the enzymatic defect in Types A and B Niemann-Pick disease. Previously, the gene encoding human SMPD1 was assigned to chromosome 17 by the differential thermostability of human and hamster SMPD1 in somatic cell hybrids. The recent isolation of the human SMPD1 cDNA (L. E. Quintern, E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff, and R. J. Desnick, 1989, EMBO J. 8: 2469-2473) permitted the mapping of this gene by molecular techniques. Oligonucleotide primers were synthesized to PCR amplify the human, but not murine, SMPD1 sequences in man-mouse somatic cell hybrids. In a panel of 15 hybrid cell lines, amplification of the human SMPD1 sequence was 100% concordant with the presence of human chromosome 11. For each of the other human chromosomes there were at least 6 discordant hybrid lines. Further analysis of somatic cell hybrids containing only chromosome 11 or chromosome 11 rearrangements localized the human SMPD1 gene to the region 11p15.1----p15.4. To provide an independent regional gene assignment, in situ hybridization was performed using the radiolabeled human SMPD1 cDNA. In the 58 metaphase cells examined, 34% of the 122 hybridization sites scored were located in the distal end of chromosome 11 with the major peak of hybridization at band 11p15. The absence of any other in situ hybridization site indicated the absence of pseudogenes or homologous sequences elsewhere in the genome. In contrast to the previous provisional localization to chromosome 17, these results assign a single locus for human SMPD1 to 11p15.1----p15.4.  相似文献   

15.
A variant human H2B histone gene (GL105), previously shown to encode a 2300 nt replication independent mRNA, has been cloned. We demonstrate this gene expresses alternative mRNAs regulated differentially during the HeLa S3 cell cycle. The H2B-Gl105 gene encodes both a 500 nt cell cycle dependent mRNA and a 2300 nt constitutively expressed mRNA. The 3' end of the cell cycle regulated mRNA terminates immediately following the region of hyphenated dyad symmetry typical of most histone mRNAs, whereas the constitutively expressed mRNA has a 1798 nt non-translated trailer that contains the same region of hyphenated dyad symmetry but is polyadenylated. The cap site for the H2B-GL105 mRNAs is located 42 nt upstream of the protein coding region. The H2B-GL105 histone gene was localized to chromosome region 1q21-1q23 by chromosomal in situ hybridization and by analysis of rodent-human somatic cell hybrids using an H2B-GL105 specific probe. The H2B-GL105 gene is paired with a functional H2A histone gene and this H2A/H2B gene pair is separated by a bidirectionally transcribed intergenic promoter region containing consensus TATA and CCAAT boxes and an OTF-1 element. These results demonstrate that cell cycle regulated and constitutively expressed histone mRNAs can be encoded by the same gene, and indicate that alternative 3' end processing may be an important mechanism for regulation of histone mRNA. Such control further increases the versatility by which cells can modulate the synthesis of replication-dependent as well as variant histone proteins during the cell cycle and at the onset of differentiation.  相似文献   

16.
Murine cDNA clones for three cyclin D genes that are normally expressed during the G1 phase of the cell cycle were used to clone the cognate human genes. Bacteriophage and cosmid clones encompassing five independent genomic loci were partially sequenced and chromosomally assigned by an analysis of somatic cell hybrids containing different human chromosomes and by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The human cyclin D1 gene (approved gene symbol, CCND1) was assigned to chromosome band 11q13, cyclin D2 (CCND2) to chromosome band 12p13, and cyclin D3 (CCND3) to chromosome band 6p21. Pseudogenes containing sequences related to cyclin D2 and cyclin D3 mapped to chromosome bands 11q13 and 6p21, respectively. Partial nucleotide sequence analysis of exons within each gene revealed that the authentic human cyclin D genes are more related to their mouse counterparts than to each other. These genes are ubiquitously transcribed in human tumor cell lines derived from different cell lineages, but are independently and, in many cases, redundantly expressed. The complex patterns of expression of individual cyclin D genes and their evolutionary conservation across species suggest that each family member may play a distinct role in cell cycle progression.  相似文献   

17.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

18.
Glutamine synthetase (E.C. 6.3.1.2) is expressed throughout the body and plays an important role in controlling body pH and in removing ammonia from the circulation. The enzyme clears -glutamate, the major neurotransmitter in the central nervous system, from neuronal synapses. The enzyme is a very sensitive marker of many disease and aging processes, especially those involving reactive oxygen species. This report describes the localization of the enzyme to chromosome 1 by PCR analysis of a human/rodent somatic cell hybrid panel. We also describe the localization of a recently described pseudogene to chromosome 9. Further localization of the glutamine synthetase gene locus to 1q23 was accomplished by fluorescencein situhybridization. The glutamine synthetase gene was mapped to five CEPH megaYACs between the polymorphic PCR markers D1S117 and D1S466 by analysis of the Whitehead Institute's recently described chromosome 1 contig map.  相似文献   

19.
《Genomics》1995,29(3)
ELA1, the pancreatic elastase 1 gene, is conserved in mammalian genomes. ELA1 was previously mapped to chromosome 12 using a panel of mouse–human somatic cell hybrids. We now report the physical and cytogenetic localization of the ELA1 gene. On the physical map, ELA1 is adjacent to the polymorphic marker AFMa283yg1 and between D12S361 and D12S347. Using fluorescencein situhybridization, we determined that ELA1 maps to 12q13.  相似文献   

20.
Asymmetric transport of mRNA within the cells is mediated by RNA-binding proteins that form, along with the mRNAs and perhaps other small RNAs, stable ribonucleoprotein complexes. However, the nature of the protein components of these complexes in vertebrates is still unknown. InDrosophila,genetic studies have identified a number of potential genes that are necessary for localization of mRNAs in oocytes; one of the most studied is thestaufengene. The staufen protein has been shown to bind to localized mRNAs in oocytes and to be expressed in somatic cells as well. To understand the mechanism of mRNA transport in mammals and characterize its components, we recently cloned and sequenced the humanstaufenhomolog cDNA (HGMW-approved symbol STAU). In this paper, we show that the gene is unique in the human genome and report its chromosomal localization by fluorescencein situhybridization. The humanstaufengene maps to chromosome 20q13.1, a region that is associated with certain genetic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号