首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinomycin D (actD) (0.003–0.10 μg/ml) and cordycepin (3–30 μg/ml) were used to examine the requirement of de novo RNA synthesis in the pH 6.6-induced expression of neurites and acetylcholinesterase activity in C-1300 mouse neuroblastoma cells. ActD at 0.03 and 0.10 μg/ml caused a pronounced stimulation in neurite formation following 20 h of treatment, although by 30 h exposure to actD (0.01–0.10 μg/ml), neurite formation had rapidly declined. Cordycepin (3–30 μg/ml) also inhibited neurite formation in a concentration- and time-dependent manner, although it did not produce an initial stimulation in neurite formation. The pH 6.6-induced increase in acetylcholinesterase activity was inhibited by both actD and cordycepin in a concentration- and time-dependent manner. Cell viabilities in the presence of actD and cordycepin were 90% or greater throughout the course of these studies.The effects of actD on [3H]uridine and [3H]leucine transport into cells and on incorporation into acid-insoluble material showed that actD inhibited RNA synthesis to a greater extent than it inhibited protein synthesis. Cordycepin caused only minor effects on [3H]uridine and [3H]leucine transport into cells and incorporation into acid-insoluble material; these effects were variable and neither concentration- nor time-dependent. The results of this study show that actD can inhibit the pH 6.6-induced expression of neurites and acetylcholinesterase activity in mouse neuroblastoma cells at concentrations which were relatively non-toxic and which caused a greater inhibition of RNA synthesis than of protein synthesis. This suggests that de novo RNA synthesis is required for the expression and maintenance of neurites and acetylcholinesterase activity in mouse neuroblastoma cells. Experiments with cordycepin were consistent with this conclusion.  相似文献   

2.
Inhibition of cell division and outgrowth of neurites with average rate of 31.5 +/- 4.4 micrometers per hour were observed in neuroblastoma cultures of the Neuro 2a clonal line 24 hours after the increase in the culture medium pH from 7.4 to 8.2. The total neurite length per one cell was about 298 +/- 36 micron in average by the 9-10th days of treatment. Simultaneously, a gradual enhancement of acetylcholinesterase cytochemical appearance took place attaining its maximum level by the same time. The peak sodium conductance, taken as a measure of sodium tetrodotoxin-sensitive potential-dependent channel density, was the same both in nondifferentiated cells grown in suspension or monolayer cultures, and in morphologically differentiated ones. The data lead to a conclusion that biochemical (acetylcholinesterase probe) and electrophysiological (sodium channel density) signs can express independently of morphological differentiation.  相似文献   

3.
When neuroblastoma cells (N18) in vitro were exposed to the bifunctional alkylating agent di-2-chloroethyl sulfide (HS), the specific activity of acetylcholinesterase began to rise rapidly after an initial lag period of 1 to 2 days. The five-fold increase in enzyme activity at 4 days after exposure to 0.5 μg/ml of HS was accompanied by a 25-fold rise in the rate of reappearance of acetylcholinesterase activity following essentially irreversible inhibition. Based on previous experience with acetylcholinesterase synthesis in serum deprived neuroblastoma cells, this behavior indicates induction of the enzyme. Vinblastine blocked the concomitant large increase in neurite extension which was stimulated by HS, but left acetylcholinesterase induction unaffected. Since enzyme activity was inversely related to the ability of the monolayer cells to form microcolonies, we conclude that acetylcholinesterase induction is dependent upon inhibition of cell division and independent of neurite extension. The monofunctional analogue of HS, 2-chloroethyl ethyl sulfide (CEES), produced similar effects, but much higher concentrations were required.  相似文献   

4.
Morphological and biochemical parameters of neuroblastoma differentiation were assessed in 12 clonal derivatives of the N-18 mouse neuroblastoma cell line selected for their ouabain-resistant (ouar) property. When cultured in a normal growth medium, nine of the 12 ouar cell lines exhibited a more complex pattern of neurite outgrowth than the parental N-18 cells. The morphological pattern most frequently observed with the ouar cells was the extension of several branched processes per cell. This pattern of spontaneous neurite outgrowth in the ouar cell lines can be correlated with an increase in expression of the 47,000-dalton RI cyclic AMP (cAMP)-binding protein. The growth rate, intracellular level of cAMP, and acetylcholinesterase activity of the ouar cell lines were not significantly different from those of the parental N-18 neuroblastoma cells. Treatment of the parental and ouar neuroblastoma cell lines with 1 mM N6, O2-dibutyryl cAMP promoted an elaborate pattern of neurite outgrowth and marked increases in acetylcholinesterase and RI cAMP-binding activities. The distinctive pattern of differentiation phenotype exhibited by the ouar cells and the dibutyryl cAMP-induced differentiated neuroblastoma cell suggests that these two protocols yielded different degrees of differentiation. Furthermore, our results suggest a linkage of the biochemical events underlying ouabain resistance and expression of differentiation phenotypes in the mouse neuroblastoma cells.  相似文献   

5.
Summary Newborn BALB/c mouse brain was cultured as disaggregated cells after serial trypsin dissociations. The ontogeny of the cultures was followed by assays of cell number, deoxyribonucleic acid, and protein content and by the activities of three enzymes considered to be markers of neuronal differentiation. Aliquots of the freshly dissociated cells were assayed for choline acetylase, acetylcholinesterase, and glutamic acid decarboxylase activities and compared with intact brain. The percentages of recovery of activities, expressed as14C product formed per mg of protein per 10 min, at pH 6.8 and 37°C, were 37% for choline acetylase, 54% for acetylcholinesterase, and 24% for glutamic acid decarboxylase. The remainder of the freshly dissociated cells were placed into culture; enzyme assays were performed as the cells multiplied and then when the cultures became static. Choline acetylase activity increased as the cells rapidly divided, and glutamic acid decarboxylase activity increased only after the cultures became confluent. Under the culture conditions, acetylcholinesterase was not induced, despite active synthesis of acetylcholine. Neuroblastoma clone N18, C1300 cell line, was grown in cell culture, and the activity of acetylcholinesterase was measured as the cells multiplied and came to confluency. The specific activity of mouse neuroblastoma acetylcholinesterase increased 25-fold when the rate of cell division was restricted. The rate of cell division could be regulated by adjusting the serum concentration. By removing fetal calf serum during the growth period, cell division ceased, and acetylcholinesterase activity was significantly and rapidly induced. Choline-O-acetyltransferase specific activity was measured in rapidly dividing and in static cultures. Its specific activity was highest in nondividing cultures, compared to cultures containing actively dividing cells (6-fold), and the specific activity of thymidylate synthetase was increased 2.5-fold in actively dividing cultures, compared to static cultures. Glioblastoma cells obtained from the rat astrocytoma, clone C6, were grown in culture, and glucose metabolism was measured in control cultures, and in cultures containing norepinephrine (0.017 mg per ml). Norepinephrine produced a 50% inhibition in the incorporation ofd-[14C]glucose. Cells incubated for 2 hr in the presence ofd-[14C]glucose, washed and then incubated in control medium or in medium containing norepinephrine, resulted in the release of greater than 50% of radioactive metabolites in the norepinephrine treated plates. Norepinephrine caused a 50% increase in14CO2 production in glioblastoma cells incubated withd-[1-14C]glucose. Norepinephrine, under similar conditions, did not affect the metabolism of glucose in clone C46, C1300 mouse neuroblastoma cells. Portions of this work were supported by a research grant (6-444946-58605) from the American Cancer Society.  相似文献   

6.
The possible functions of ornithine decarboxylase (ODC) and polyamines in the differetiation of mouse NB-15 neuroblastoma cells were investigated by examining the changes of these parameters in the differentiaton and nondifferentiating NB-15 cells over a 5-day culture period. Differentiation of NB-15 cells was induced by the addition of dibutyryl cyclic AMP and 3-isobutyl-1-methylxanthin (IBMX) to the growth medium and was monitored by neurite outgrowth, increase of acetylcholinesterase (AChE), and RI cAMP-binding protein. Plating of NB-15 cells in fresh serum-containing growth medium was accompanied by rapid growth and a marked increase of ODC activity, this early increase of ODC activity was attenuated, both in duration and in magnitude, in the differentiating cells. The spermidine content of the differentiating neuroblastoma cell was significantly lower than that of the nondifferentiating cells. In the fully differentiated neuroblastoma cells, the ODC activity and spermidine content were lower than that of the undifferentiated cells by approximately 15-fold and five-fold, respectively. Based on these results it is proposed that changes of polyamine metabolism may be of significance in the differentiation of mouse neuroblastoma cells.  相似文献   

7.
G M Brodeur  M N Goldstein 《Cytobios》1976,16(62):133-138
Cells of three established lines of human neuroblastoma and an established line of C1300 mouse neuroblastoma were grown in control medium or in experimental medium containing mouse nerve growth factor (NGF). Cultures were stained histochemically for acetylcholinesterase (AChE) during log growth and at confluency. Human neuroblastoma cells grown in medium containing NGF were morphologically more differentiated and they were stained much more intensely for AChE during both phases of growth than were cells in control cultures. The enzyme was distributed over cell bodies and neurites. Neuroblastoma cells of the mouse line were not stimulated to form neurites by NGF, but they were more intensely stained for acetylcholinesterase than cells grown in control medium. These observations support earlier findings that NGF stimulates differentiation of human and mouse neuroblastoma cells in vitro.  相似文献   

8.
We have previously shown that culturing HepG2 cells in pH 6.6 culture medium increases the c‐Src‐dependent tyrosine phosphorylation of β‐catenin and induces disassembly of adherens junctions (AJs). Here, we investigated the upstream mechanism leading to this pH 6.6‐induced modification of E‐cadherin. In control cells cultured at pH 7.4, E‐cadherin staining was linear and continuous at cell–cell contact sites. Culturing cells at pH 6.6 was not cytotoxic, and resulted in weak and discontinuous junctional E‐cadherin staining, consistent with the decreased levels of E‐cadherin in membrane fractions. pH 6.6 treatment activated c‐Src and Fyn kinase and induced tyrosine phosphorylation of p120 catenin (p120ctn) and E‐cadherin. Inhibition of Src family kinases by PP2 attenuated the pH 6.6‐induced tyrosine phosphorylation of E‐cadherin and p120ctn, and prevented the loss of these proteins from AJs. In addition, E‐cadherin was bound to Hakai and ubiquitinated. Furthermore, pH 6.6‐induced detachment of E‐cadherin from AJs was blocked by pretreatment with MG132 or NH4Cl, indicating the involvement of ubiquitin‐proteasomal/lysosomal degradation of E‐cadherin. An early loss of p120ctn prior to E‐cadherin detachment from AJs was noted, concomitant with a decreased association between p120ctn and E‐cadherin at pH 6.6. PP2 pretreatment prevented the dissociation of these two proteins. In conclusion, pH 6.6 activated Src kinases, resulting in tyrosine phosphorylation of E‐cadherin and p120ctn and a weakening of the association of E‐cadherin with p120ctn and contributing to the instability of E‐cadherin at AJs. J. Cell. Biochem. 108: 851–859, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The ability of retinoic acid (RA) to modulate acetylcholinesterase (AChE) activity in a human neuroblastoma cell line (LN-N-5) was examined. The specific activity of AChE was significantly increased 3 days after exposure of LA-N-5 to RA and reached its maximum values after 9 or more days of culturing. Dose-response experiments demonstrated that large increases of AChE occurred at RA concentrations between 10(-7) and 10(-6) M with maximum AChE values detected at 10(-6)-10(-5) M. Increased AChE activity paralleled neurite outgrowth in LA-N-5 cultures. These findings demonstrate that RA can regulate specific AChE activity in human neuroblastoma cells in a manner consistent with neuronal maturation.  相似文献   

10.
Acetylcholinesterase mediates cell adhesion and neurite outgrowth through a site associated with the peripheral anionic site (PAS). Monoclonal antibodies raised to this site block cell adhesion. We have raised anti-idiotypic antibodies to one of these antibodies. The anti-idiotypic antibodies recognized the immunogenic antibody and non-specific mouse IgG, but not acetylcholinesterase. Five antibodies (out of 143 clones, an incidence of 3.5%) were able to promote neurite outgrowth in human neuroblastoma cells in vitro in a similar manner to acetylcholinesterase itself, suggesting that these antibodies carry an internal image of the neuritogenic site. Two of the antibodies were significantly more effective (P < 0.01) than acetylcholinesterase in this regard. The antibodies also bound specifically to mouse laminin-1 and human collagen IV, as does acetylcholinesterase. This binding was displaced by unlabelled antibody, as well as by acetylcholinesterase itself, indicating competition with acetylcholinesterase. We have also investigated the development of anti-anti-idiotypic antibodies in mice in vivo, and have observed that four of these (out of 318 clones, an incidence of 1.26%) mimic the idiotypic antibody and abrogate adhesion in neuroblastoma cells. We have thus demonstrated functional mimicry of the neuritogenic site on acetylcholinesterase in anti-idiotypic antibodies, enhancement of this activity in one antibody, and mimicry of the idiotypic antibody site in anti-anti-idiotypic antibodies. Implications of these findings for differentiation-promoting cancer therapy are discussed.  相似文献   

11.
Induction of Acetylcholine Esterase Activity in a Mouse Neuroblastoma   总被引:4,自引:0,他引:4  
TISSUE culture lines of mouse neuroblastoma C1300 contain acetylcholine esterase1, the specific activity of which depends on the conditions of growth, for the inhibition of cell division leads to an increase in esterase activity2,3. Although this suggests that the cessation of division is directly responsible for increased enzyme synthesis, it may also be that the increase of specific activity is the result of (1) neurite formation by differentiating neuroblast cells or (2) events accompanying ageing and cell death. This article describes experiments designed to distinguish between these hypotheses and to examine the regulation of esterases in other tissue culture lines.  相似文献   

12.
The effects of 5-(3,3-dimethyl-1-triazeno) imidazole-4-carboximide (DTIC) on morphological and biochemical parameters of differentiation were studied in mouse neuroblastoma cells in culture. DTIC (10 μg/ml) did not induce formation of neurites in the cells but inhibited cell division, and produced a marked increase in cell size and in activity of three enzymes (tyrosine hydroxylase, choline acetyltransferase and acetylcholinesterase) involved in neurotransmitter metabolism. These effects were apparently not related to an increase in the intracellular level of cyclic AMP.  相似文献   

13.
Murine neuroblastoma cells, chronically infected with measles virus were examined for changes in neural-specific function and structure as well as cellular growth and macromolecular synthesis. When exposed to neural differentiation-inducing culture conditions, neurite formation and acetylcholinesterase activity are significantly increased in control cultures but not in persistently infected cells. Infected cultures manifest a more rapid doubling time, but depressed RNA and protein synthesis at saturation densities. Higher concentrations of papavarine, a cyclic 3′–5′ AMP phosphodiesterase inhibitor, result in selective death of persistently infected cells.  相似文献   

14.
Protease nexin-1 (PN-1) is a protein proteinase inhibitor recently shown to be identical with the glial-derived neurite-promoting factor or glial-derived nexin. It has been shown to promote neurite outgrowth in neuroblastoma cells and in sympathetic neurons. The present experiments were designed to further test the hypothesis that this activity on neuroblastoma cells is due to its ability to complex and inhibit thrombin. It has been suggested that PN-1:thrombin complexes might mediate the neurite outgrowth activity of PN-1. However, the present studies showed that such complexes, unlike free PN-1, did not promote neurite outgrowth. The neurite outgrowth activity of PN-1 was only detected in the presence of thrombin or serum (which contains thrombin). PN-1 did not affect the rate or extent of neurite outgrowth that occurred when neuroblastoma cells were placed in serum-free medium. Retraction of neurites by thrombin was indistinguishable in cells whose neurites had been extended in the presence or absence of PN-1. The neurite-promoting activity of PN-1 was inhibited by an anti-PN-1 monoclonal antibody, which blocks its capacity to complex serine proteinases. The plasma thrombin inhibitor, antithrombin III, stimulated neurite outgrowth but only when its thrombin inhibitory activity was accelerated by heparin. The neurite outgrowth activity of both antithrombin III and PN-1 corresponded to their inhibition of thrombin. Together, these observations show that PN-1 promotes neurite outgrowth from neuroblastoma cells by inhibiting thrombin and suggest that this depends on the ability of thrombin to retract neurites.  相似文献   

15.
In Chinese hamster Don cells, fusion of an interphase cell with a metaphase cell resulted either in prophasing of the interphase nucleus, including loss of the nuclear envelope (NE), or in the formation of a double membrane around the metaphase chromosomes. Only one of these phenomena occurred in a given interphase-metaphase (I–M) binucleate cell. At pH 7.4, there was about an equal probability that either event could occur amongst the population of I–M cells. The effect of pH changes in the medium containing the fused cells was examined. At pH 6.6, prophasing was the predominant event; at pH 8.0, membrane formation predominated. It was found that the rate of progression of a mononucleate cell from G2 to metaphase was appreciably faster at pH 6.6 than at pH 8.0. Conversely, the progression from metaphase to G1 was faster at pH 8.0 than at pH 6.6. These results with the mononucleate cells strengthen the hypothesis that structural changes in I–M cells are reflections of normal mitotic phenomena. Additional evidence for this hypothesis was produced by electron microscope examination after direct fixation in chrom-osmium. The double membrane around the chromosomes of the I–M cell was indistinguishable from the normal NE. The results obtained by varying the pH of the medium containing the fused cells provide an indication that disruption or formation of the NE of Don cells depends on the balance reached between disruptive and formative processes.  相似文献   

16.
Abstract— Synthetic substance P initially increased cyclic AMP levels and subsequently induced neurite extension in cultured neuroblastoma N 18 cells. The magnitude of these effects depended on the concentration of fetal calf serum (FCS) in the culture medium, being more evident in the presence of a lower (0.1%) concentration of FCS.
In Eagle's medium containing 0.1% FCS, low concentrations of substance P (10−7-10−5 M) increased cyclic AMP levels and stimulated neurite extension.
In Eagle's medium containing 5%FCS, both substance P at concentrations of 10−5-10−3M and dibutyryl cyclic AMP at concentrations of 10−4-10−2M increased cyclic AMP levels and stimulated neurite extension. The activities of acetylcholinesterase, (Na++ K+)-, HCO3 and Mg2+ -stimulated-ATPase were also increased. Cell growth was inhibited.
Substance P at concentrations of 10-7-10−5M also stimulated the adenylate cyclase activity of a particulate fraction of N 18 in a concentration-dependent manner.  相似文献   

17.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Summary The effect of various types of serum on morphological and biochemical changes in mouse neuroblastoma cells (clone NBP2) in culture was studied. The extent of spontaneous morphological differentiation varied markedly depending upon the type of serum and was maximal in agammaglobulin calf serum (CS). The extent of morphological differentiation after treatment of cells with cyclic AMP-stimulating agents was also dependent upon serum type and was least pronounced in fetal calf serum. The doubling time and extent of clumping varied with the type, of serum. The activity of tyrosine hydroxylase (TH) in NB cells was dependent upon serum type and it was highest in newborn CS and agammaglobulin CS. Although elevation of intracellular levels of cyclic AMP in NBP2 clone invariably stimulates neurite formation and TH activity, these functions were increased in certain sera without a significant increase in the cellular cyclic AMP levels. The present study shows that neurite formation, growth rate and TH activity are regulated by more than one mode, one of which is mediated by cyclic AMP. The above changes are independently regulated in the sense that the expression of one can be increased in the absence of others. Preliminary reports of this work were presented at the Symposium on Cell Differentiation and Neoplasia, March 1976; American Society for Neurochemistry, March 1978; and the FASEB meetings, April 1978. This work was supported in part by NIH Grant ROESNS 01576, NIH Training Grant 4007072 and Research Scientist Career Development Award MH 42479.  相似文献   

19.
LE Gerweck 《Radiation research》2012,178(2):AV198-AV203
The lethal response of Chinese hamster ovary cells to hyperthermia was determined at selected extracellular pH. Decreasing pH from 7.6 to 6.7 increased the lethal response of cells over the temperature range of 41 to 44°C. Cell viability was not effected over this pH range at 37°C. The pH sensitizing affect was most prominent at temperatures which were marginally lethal at normal pH (7.4). Four hours of exposure to 42°C decreased survival to 10% at pH 7.4 and 0.01% at pH 6.7. Enhanced cell killing was observed when the cells were exposed to reduced pH and elevated temperatures simultaneously. Prolonging the time of pH exposure before and after hyperthermia did not influence survival. High-density culturing increased the sensitivity of cells to hyperthermia. This affect was due to metabolic acidification of the medium and could be reversed by adjusting the pH.  相似文献   

20.
A pure culture of Pseudomonas fluorescens was used as a model system to study the kinetics of denitrification. An exponentially growing culture was harvested and resuspended in an anoxic acetate solution buffered with K/Na phosphate at pH values of 6.6, 7.0, 7.4, and 7.8. The temperature was kept at 28 degrees C in all assays. Nitrate pulses of approximately 0.2 mg N/L caused nitrite to accumulate due to a faster rate of nitrate reduction over nitrite reduction. The rate of nitrate reduction was observed to depend on its concentration as predicted by the Michaelis-Menten equation. At nonlimiting nitrate concentrations, nitrite reduction was described by the same equation. Otherwise, nitrite reduction also depended on nitrate concentration. Consequently, nitrate and nitrite reductions compete with each other for the oxidation of common electron donors. A kinetic model for nitrate competitive inhibition of nitrite reduction is proposed. The model was used to interpret the nitrate and nitrite profiles observed at the four pH values: the optimum pH value was 7.0 in both cases; the affinity for nitrite was also not affected by the medium pH in the range of values 6.6 to 7.4 (K(mNO(3) ) = 0.04 mg N/L); the affinity for nitrite was also not affected by the medium pH in the range of values 6.6 to 7.4 (K(mNO(2) ) = 0.06 mg N/L), but it decreased sharply for the pH value of 7.8. Although the ratio between the two maximum reduction rates (V(max NO(2) )/V(max NO(3) )) is constant, nitrite accumulation depends on the medium pH value. Therefore, the regulation mechanism that shifts the electron flow between the two terminal reductases is readily reversible and does not change their relative maximum reduction rates. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号