首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The effects of sphingosine 1-phosphate (S1P) on prostaglandin I(2) (PGI(2)) production and cyclooxygenase (COX) expression in cultured rat vascular smooth muscle cells (VSMCs) were investigated. S1P stimulated PGI(2) production in a concentration-dependent manner, which was completely suppressed by NS-398, a selective COX-2 inhibitor, as determined by radioimmunoassay. S1P stimulated COX-2 protein and mRNA expressions in a concentration- and time-dependent manner, while it had no effect on COX-1 expression. S1P(2) and S1P(3) receptors mRNA were abundantly expressed in rat VSMCs. Suramin, an antagonist of S1P(3) receptor, almost completely inhibited S1P-induced COX-2 expression. Pretreatment of VSMCs with pertussis toxin (PTX) partially, but significantly inhibited S1P-induced PGI(2) production and COX-2 expression. S1P also activated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). However, neither PD 98059, a selective inhibitor of ERK activation, nor SB 203580, a selective inhibitor of p38 MAPK, had a significant inhibitory effect on S1P-induced COX-2 expression, suggesting that the MAPK activation does not play main roles in S1P-induced COX-2 induction. S1P-induced COX-2 expression was inhibited by PP2, an inhibitor of Src-family tyrosine kinase, Ca(2+) depletion, and GF 109203X, an inhibitor of protein kinase C (PKC). These results suggest that S1P stimulates COX-2 induction in rat VSMCs through mechanisms involving Ca(2+)-dependent PKC and Src-family tyrosine kinase activation via S1P(3) receptor coupled to PTX-sensitive and -insensitive G proteins.  相似文献   

2.
3.
4.
5.
6.
Cyclooxygenase (COX)-2 expression in intestinal epithelial cells is associated with colorectal carcinogenesis. COX-2 expression is induced by numerous growth factors and gastrointestinal hormones through multiple protein kinase cascades. Here, the role of mitogen activated protein kinases (MAPKs) and small GTPases in COX-2 expression was investigated. Anisomycin and sorbitol induced COX-2 expression in non-transformed, intestinal epithelial IEC-18 cells. Both anisomycin and sorbitol activated p38(MAPK) followed by phosphorylation of CREB. SB202190 and PD169316 but neither PD98059 nor U0126 blocked COX-2 expression and CREB phosphorylation by anisomycin or sorbitol. Clostridium difficile toxin B inhibition of small GTPases did not affect anisomycin-induced COX-2 mRNA expression or phosphorylation of p38MAPK and CREB but did inhibit sorbitol-dependent COX-2 expression and phosphorylation of p38MAPK and CREB. Angiotensin (Ang) II-dependent induction of COX-2 mRNA and induced phosphorylation of p38MAPK and CREB were inhibited by toxin B. Reduction of CREB protein in cells transfected with CREB siRNAs inhibited anisomycin-induced COX-2 expression. These results indicate that activation of p38MAPK signaling is sufficient for COX-2 expression in IEC-18 cells. Ang II and sorbitol require small GTPase activity for COX-2 expression via p38MAPK while anisomycin-induced COX-2 expression by p38MAPK does not require small GTPases. This places small GTPase activity down-stream of the AT1 receptor and hyperosmotic stress and up-stream of p38MAPK and CREB.  相似文献   

7.
We have shown that extracellular calcium [Ca(+2)](e) induces cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production via an ERK signaling pathway in osteoblasts. In this study, we examined the roles of protein kinase C (PKC) and A (PKA) signaling pathways in the [Ca(+2)](e) induction of COX-2 in primary calvarial osteoblasts from mice transgenic for -371 bp of the COX-2 promoter fused to a luciferase reporter. Neither PKC specific inhibitors nor downregulation of the PKC pathway by phorbol myristate acetate (PMA) affected the [Ca(+2)](e) stimulation of COX-2 mRNA or promoter activity. In contrast, PKA inhibitors, used at doses that inhibited forskolin-stimulated luciferase activity by 90%, reduced [Ca(+2)](e)-stimulated COX-2 mRNA expression and promoter activity by 80-90%. [Ca(+2)](e) also stimulated a 2- to 3-fold increase in cAMP production. Hence, the [Ca(+2)](e) induction of COX-2 mRNA expression and promoter activity was independent of the PKC pathway and dependent on the PKA signaling pathway.  相似文献   

8.
Ueno T  Fujimori K 《The FEBS journal》2011,278(16):2901-2912
Prostaglandin (PG) F(2α) suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor γ. In this study, we identified a novel suppression mechanism, operating in the early phase of adipogenesis, that increased the production of anti-adipogenic PGF(2α) and PGE(2) by enhancing cyclooxygenase (COX) 2 expression through the PGF(2α) -activated FP receptor/extracellular-signal-regulated kinase (ERK)/cyclic AMP response element binding protein (CREB) cascade. COX-2 expression was enhanced with a peak at 1 h for the mRNA level and at 3 h for the protein level after the addition of Fluprostenol, an FP receptor agonist. The Fluprostenol-derived elevation of COX-2 expression was suppressed by the co-treatment with an FP receptor antagonist, AL8810, with a mitogen-activated protein kinase (MEK; ERK kinase) inhibitor, PD98059. ERK was phosphorylated within 10 min after the addition of Fluprostenol, and its phosphorylation was inhibited by the co-treatment with AL8810 or PD98059. Moreover, FP receptor mediated activation of the MEK/ERK cascade and COX-2 expression increased the production of PGF(2α) and PGE(2) . An FP receptor antagonist and each inhibitor for MEK and COX-2 suppressed the PGF(2α) -derived induction of synthesis of these PGs. Furthermore, promoter-luciferase and chromatin immunoprecipitation assays demonstrated that PGF(2α) -derived COX-2 expression was activated through binding of CREB to the promoter region of the COX-2 gene in 3T3-L1 cells. These results indicate that PGF(2α) suppresses the progression of the early phase of adipogenesis by enhancing the binding of CREB to the COX-2 promoter via FP receptor activated MEK/ERK cascade. Thus, PGF(2α) forms a positive feedback loop that coordinately suppresses the early phase of adipogenesis through the increased production of anti-adipogenic PGF(2α) and PGE(2) .  相似文献   

9.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

10.
We examined effects of protein kinase C (PKC) activation by phorbol dibutyrate (PDB) on prostaglandin production in astroglia. Astroglia were cultured from sheep fetal cortex and grown in Eagle's basal media supplemented with 10% fetal calf serum (BME-C). Prostaglandin F2a (PGF) levels in media were determined at 2–24 hours after exposure to PDB. PDB increased production of PGF at 10−8M and 10−6M. In addition, PDB increased the ratio of membrane to cytosolic PKC. Coapplication of H7 [1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine] (10−4M) with PDB (10−6M) inhibited PDB-induced PGF2a production. To investigate the role of protein synthesis in increased prostaglandin production by PDB, astroglia were coincubated with actinomycin D (1 mg/ml) or cycloheximide (10 mg/ml). At 4 hrs, both actinomycin D and cycloheximide inhibited increases in PGF2a in response to PDB application. In addition, COX-2 mRNA levels and COX activity levels were examined. PDB increased COX-2 mRNA levels by 2 hours, and COX activity tripled after 12 hr exposure to PDB. In addition, the increase in COX activity was blocked by cycloheximide. In summary, PKC activation promotes enhanced prostaglandin production via an increase in COX synthesis.  相似文献   

11.
PKC, a major target for the tumor-promoting phorbol esters, has been implicated in the signal transduction pathways that mediate important functions in intestinal epithelial cells, including proliferation and carcinogenesis. With the use of IEC-18 cells arrested in G0/G1, addition of phorbol esters resulted in a modest increase in [3H]thymidine incorporation and a slight shift toward the S and G2/M phases of the cell cycle, whereas the combination of EGF and phorbol 12,13-dibutyrate (PDB) synergistically stimulated DNA synthesis. To investigate the effects of receptor-mediated PKC activation on mitogenesis, we demonstrated that ANG II induced ERK activation, a response completely blocked by pretreatment with mitogen/extracellular signal-regulated kinase inhibitors or specific PKC inhibitors. Furthermore, ANG II stimulated an over threefold increase in [3H]thymidine incorporation that was corroborated by flow cytometric analysis of the cell cycle to levels comparable to that achieved by the combination of EGF and PDB. Taken together, our results indicate that receptor-mediated PKC activation, as induced by ANG II, transduces mitogenic signals leading to DNA synthesis and cell proliferation in IEC-18 cells.  相似文献   

12.
It is well-known that sphingosine-1-phosphate (S1P), the phospholipid content of HDL, binding to S1P receptors can raise COX-2 expression and PGI(2) release through p38MAPK/CREB pathway. In the present study we assess the action of SR-B1 initiated PI3K-Akt-eNOS signaling in the regulation of COX-2 expression and PGI(2) production in response to HDL. We found that apoA1 could increase PGI(2) release and COX-2 expression in ECV 304 endothelial cells. Furthermore, SR-B1 was found to be involved in HDL induced up-regulation of COX-2 and PGI(2). Over-expressed SR-B1 did not significantly increase the expression of COX-2 and the PGI(2) levels, but knock-down of SR-B1 by siRNA could significantly attenuate COX-2 expression and PGI(2) release together with p38MAPK and CREB phosphorylation. Consistently, the declines of p-p38MAPK, p-CREB, COX-2 and PGI(2) were also observed after incubation with LY294002 (25μmol/L; PI3K special inhibitor) or L-NAME (50μmol/L; eNOS special inhibitor). In addition, we demonstrated the increases of PGI(2) release, COX-2 expression and p38MAPK phosphorylation, when nitric oxide level was raised through the incubation of L-arginine (10 or 20nmol/L) in endothelial cells. Taking together, our data support that SR-B1 mediated PI3K-Akt-eNOS signaling was involved in HDL-induced COX-2 expression and PGI(2) release in endothelial cells.  相似文献   

13.
14.
Thromboxane A(2) receptors (TP) were previously localized to discrete regions in the rat brain on myelinated fiber tracts and oligodendrocytes (OLGs). The present studies extended these findings and investigated the effects of TP signaling on cell proliferation, survival, and gene expression in OLG progenitor cells (OPCs) and OLGs. It was found that the TP agonist, U46619 stimulated the proliferation of OPCs and promoted the survival of mature OLGs. Examination of the early gene expression events involved in OPC proliferation, revealed that c-fos expression was substantially increased by U46619 stimulation. Treatment of OPCs or OLGs with U46619 caused activation of the mitogen-activated protein kinases (MAPK) ERK 1/2. In OPCs this activation was blocked by inhibition of src. However, in OLGs this phosphorylation was not only blocked by inhibition of src but also by inhibition of protein kinase C (PKC). Furthermore, U46619 was found to increase CREB phosphorylation in both OPCs and OLGs. Similar to ERK 1/2 activation, there was a divergence in the mechanism of the TP-mediated CREB response for each cell type. Specifically, U46619 activation was attenuated by src and protein kinase A (PKA) inhibition in OPCs, whereas in OLGs this effect was blocked by inhibition of src, PKA as well as by inhibition of PKC. Collectively, these results provide the first demonstration that TP-activated nuclear signaling events are involved in the proliferation of OPCs, the survival of mature OLGs, and the stimulation of gene expression.  相似文献   

15.
We have reported previously that protein kinase C (PKC) signaling can mediate a program of cell cycle withdrawal in IEC-18 nontransformed intestinal crypt cells, involving rapid disappearance of cyclin D1, increased expression of Cip/Kip cyclin-dependent kinase inhibitors, and activation of the growth suppressor function of pocket proteins. In the current study, we present evidence to support a requisite role for PKC alpha in mediating these effects. Furthermore, analysis of the signaling events linking PKC/PKC alpha activation to changes in the cell cycle regulatory machinery implicate the Ras/Raf/MEK/ERK cascade. PKC/PKC alpha activity promoted GTP loading of Ras, activation of Raf-1, and phosphorylation/activation of ERK. ERK activation was found to be required for critical downstream effects of PKC/PKC alpha activation, including cyclin D1 down-regulation, p21(Waf1/Cip1) induction, and cell cycle arrest. PKC-induced ERK activation was strong and sustained relative to that produced by proliferative signals, and the growth inhibitory effects of PKC agonists were dominant over proliferative events when these opposing stimuli were administered simultaneously. PKC signaling promoted cytoplasmic and nuclear accumulation of ERK activity, whereas growth factor-induced phospho-ERK was localized only in the cytoplasm. Comparison of the effects of PKC agonists that differ in their ability to sustain PKC alpha activation and growth arrest in IEC-18 cells, together with the use of selective kinase inhibitors, indicated that the length of PKC-mediated cell cycle exit is dictated by the magnitude/duration of input signal (i.e. PKC alpha activity) and of activation of the ERK cascade. The extent/duration of phospho-ERK nuclear localization may also be important determinants of the duration of PKC agonist-induced growth arrest in this system. Taken together, the data point to PKC alpha and the Ras/Raf/MEK/ERK cascade as key regulators of cell cycle withdrawal in intestinal epithelial cells.  相似文献   

16.
17.
18.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

19.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

20.
In rat aortic smooth muscle cells, vasopressin (AVP) induces prostacyclin (PGI2) production, probably as the consequence of phospholipase C activation. Our study analyzes the effects of phorbol 12-myristate 13-acetate (PMA)-induced protein kinase C (PKC) activation on AVP-induced inositol 1,4,5-trisphosphate formation, cytosolic free Ca2+ concentration [( Ca2+]c), and PGI2 production. PMA rapidly decreased PKC activity in the cytosol of smooth muscle cells, while increasing it transiently in the membranes with a maximum around 20 min. Prior exposure of the cells to PMA resulted in a transient inhibition of both AVP-induced inositol 1,4,5-trisphosphate formation and [Ca2+]c rise. This was inversely correlated with membraneous PKC activity and partially reversed by the PKC inhibitor staurosporine. In contrast, pretreating the cells with PMA markedly potentiated A23187 or AVP-induced PGI2 production. Under those conditions, AVP-induced PGI2 production did not correlate either with PMA-induced membranous PKC activity or with AVP-induced PLC activation. However, this potentiating effect of PMA was reversed by staurosporine and was not mimicked by the 4 alpha-phorbol, an inactive analogue of PMA. Thus, the possibility is raised that, while inhibiting AVP-induced PLC activation, PMA-induced PKC activation increases the Ca2+ sensitivity of the cellular signaling system leading to PGI2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号