首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Y. Landry  A. Goffeau 《BBA》1975,376(3):470-484
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown “petite-negative” yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40°C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles.

2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerolgrown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae.

3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the “petite-positive” yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126.

4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 μM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 μM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor.

5. We conclude that “petite-positive” and “petite-negative” yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   


2.
Pro-transglutaminase from Streptomyces mobaraensis was expressed in Escherichia coli as a fusion protein carrying a C-terminal histidine tag (pro-MTG-His6). The recombinant organism was cultivated in 15 L bioreactor scale and pro-MTG-His6 was purified by immobilized metal affinity chromatography. Activation of the inactive pro-enzyme using trypsin resulted in an unexpected degradation of the transglutaminase and a concomitant loss of activity. Therefore, a set of commercially available proteases was investigated for their activation potential without destroying the target enzyme. Besides trypsin, chymotrypsin and proteinase K were found to activate but hydrolyze the (pro-MTG-His6). Cathepsin B, dispase I, and thrombin were shown to specifically hydrolyze pro-MTG-His6 without deactivation. TAMEP, the endogeneous protease from S. mobaraensis was purified for comparison and also found to activate the recombinant histidine-tagged transglutaminase without degradation. The TAMEP activated MTG-His6 was purified and characterized. The specific activity (23 U/mg) of the recombinant histidine-tagged transglutaminase, the temperature optimum (50 °C), and the temperature stability (t1/2 at 60 °C = 1.7 min) were comparable to the wild-type enzyme. A C-terminal peptide tag did neither affect the activity nor the stability but facilitated the purification. The purification of the histidine-tagged protein is possible before or after activation.  相似文献   

3.
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic β' homologue) and subunit 2 (β homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts  相似文献   

4.
In this study, we compared two gene fusion expression strategies using two rare codon genes (Ssh10b and MtGrxM) from archaea as a model system. Both genes can be highly expressed as N- or C-terminal fusion partners to GST or the intein/chitin-binding tag. However, the fusion protein with intein tag could not be cleaved, even under stringent conditions, possibly due to steric hindrance, thus preventing further purification. In contrast, the GST fusion system could increase protein expression level and the corresponding fusion protein could be easily cleaved by thrombin. After binding to glutathione sepharose, the fusion protein was cleaved on column, and a roughly purified protein fraction was eluted. This fraction was purified by heating at 80 degrees C for 10 min, followed by centrifugation. The correct total mass and N-terminal primary structure were confirmed by mass spectrometry and Edman degradation. Both constructs were used for in vitro expression, and similar results were obtained, indicating higher expression levels of the GST tag vs. intein/chitin tag. Taken together, our results suggest that the GST fusion system can be used as a considerable alternative to synthetic genes for the expression of rare codon genes. The affinity chromatography purification followed by a heating step is an efficient and convenient method for thermostable protein purification.  相似文献   

5.
The production of recombinant protein in Escherichia coli is often hampered by low expression levels and low solubility. A variety of methodologies have been developed including protein production at low temperature, and fusion protein expression using soluble protein tags. Here, we present the novel cold-shock vector pCold-GST for high-level expression of soluble proteins in E. coli. This vector is a modified pCold I cold-shock vector that includes the glutathione S-transferase (GST) tag. The pCold-GST expression system developed was applied to 10 proteins that could not be expressed using conventional E. coli expression methodologies, and nine of these proteins were successfully obtained in the soluble fraction. The expression and purification of two unstable protein fragments were also demonstrated by employing a C-terminal hexa-histidine tag for purification purposes. The purified proteins were amenable to NMR analyses. These data suggest that the pCold-GST expression system can be utilized to improve the expression and purification of various proteins.  相似文献   

6.
Poly(ADP-ribose) polymerase (PARP) has been suggested to play a regulatory role in vivo, in DNA replication and/or DNA repair based mainly on its capacity to bind to DNA strand breaks. This interaction is modulated through auto poly(ADP-ribosylation). However, the biological function of PARP may also involve interactions with proteins such as topoisomerase I or DNA polymerase , which may or may not be themselves ADP-ribosylated. Using the yeast two-hybrid method search for other proteins interacting with PARP, we have isolated a full-length cDNA clone coding for a protein of 158 amino acid residues. This amino acid sequence is 66 and 56% identical to yeast ubiquitin-conjugating enzymes Hus5 and Ubc9 of Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Moreover, we have demonstrated that the expressed protein complements a S. cerevisiae yeast strain deficient for Ubc9. The protein encoded by the isolated cDNA is thus a new human counterpart of the ubiquitin-conjugating enzyme family and has been called hUbc9. The hubc9 gene locus has been assigned to the chromosomal location 16p13.2-p13.3. By means of two-hybrid analysis it was discovered that hUbc9 interacts with the automodification domain of PARP. This interaction was further confirmed using GST (glutathione-S-transferase) tagged fusion proteins: (i) in vivo, by transfecting cos7 cells with hUbc9 cloned in an eukaryotic expression vector, and (ii) in vitro, by mixing purified PARP with hUbc9 purified and expressed in bacteria. The possible significance and function of this interaction is discussed while taking into account the possible intracellular role of hUbc9.  相似文献   

7.
Mog1 is conserved from yeast to mammal, but its function is obscure. We isolated yeast genes that rescued a temperature-sensitive death of S. cerevisiae Scmog1Δ, and of S. pombe Spmog1ts. Scmog1Δ was rescued by Opi3p, a phospholipid N-methyltransferase, in addition to S. cerevisiae Ran-homologue Gsp1p, and a RanGDP binding protein Ntf2p. On the other hand, Spmog1ts was rescued by Cid13 that is a poly (A) polymerase specific for suc22+ mRNA encoding a subunit of ribonucleotide reductase, Ssp1 that is a protein kinase involved in stress response pathway, and Crp79 that is required for mRNA export, in addition to Spi1, S. pombe Ran-homologue, and Nxt2, S. pombe homologue of Ntf2p. Consistent with the identification of those suppressors, lack of ScMog1p dislocates Opi3p from the nuclear membrane and all of Spmog1ts showed the nuclear accumulation of mRNA. Furthermore, SpMog1 was co-precipitated with Nxt2 and Cid13.  相似文献   

8.
Many mammalian proteins are multifunctional proteins with biological activities whose characterization often requires in vitro studies. However, these studies depend on generation of sufficient quantities of recombinant protein and many mammalian proteins cannot be easily expressed and purified as full-length products. One example is the Wilm's tumor gene product, WT1, which has proven difficult to express as a full-length purified recombinant protein using standard approaches. To facilitate expression of full-length WT1 we have developed approaches that optimized its expression and purification in Escherichia coli and mammalian cells. First, using a bicistronic vector system, we successfully expressed and purified WT1 containing a C-terminal tandem affinity tag in 293T cells. Second, using a specific strain of E. coli transformed with a modified GST vector, we successfully expressed and purified N-terminal GST tagged and C-terminal 2x FLAG tagged full-length human WT1. The benefits of these approaches include: (1) two-step affinity purification to allow high quality of protein purification, (2) large soluble tags that can be used for a first affinity purification step, but then conveniently removed with the highly site-specific TEV protease, and (3) the use of non-denaturing purification and elution conditions that are predicted to preserve native protein conformation and function.  相似文献   

9.
Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.  相似文献   

10.
KGLP-1, a 31-amino acid glucagon-like peptide-1 (GLP-1) analogue, has a great therapeutic potential for anti-diabetes. In this work, a strategy for expression and purification of functional KGLP-1 peptide has been established. KGLP-1 cDNA was fused with glutathione S-transferase (GST), with an enterokinase cleavage site in the fusion junction. The recombinant fusion protein GST–KGLP-1 was affinity purified via the GST-tag, and then digested with enterokinase. The resulting GST part as well as the enzymes were eliminated by ultra-filtration followed by size exclusion chromatograph. The yield of purified KGLP-1 was approximately 12.1 mg/L, with purity of 96.18 %. The recombinant KGLP-1 was shown to have similar bioactivity as native GLP-1 when evaluated in a Chinese hamster ovary cell line expressing a GLP-1 receptor-egfp reporter gene.  相似文献   

11.
The Corynebacterium glutamicum (C. glutamicum) phosphoenolpyruvate carboxykinase (PCK) gene (pckA) was cloned into an Escherichia coli expression vector with a glutathione S-transferase (GST) tag. This recombinant DNA can produce highly overexpressed tagged protein in soluble form. This is the first report of the production of C. glutamicum PCK overexpressed in E. coli. The GST-fused PCK was purified using the glutathione-Sepharose 4B affinity column and the GST tag was removed in one-step. This one-step, easy purification method would be very useful for future mutational and structural studies. The molecular mass of the purified protein is approximately 68 kDa as confirmed by mass spectrometry and it is a monomeric enzyme. Also, the enzyme assays revealed that C. glutamicum PCK has a GTP-specific activity and that its activity is maximal in the presence of both Mn2+ and Mg2+.  相似文献   

12.
We have studied the effect of solubilising N-terminal fusion proteins on the yield of target protein after removal of the fusion partner and subsequent purification using immobilised metal ion affinity chromatography. We compared the yield of 45 human proteins produced from four different expression vectors: three having an N-terminal solubilising fusion protein (the GB1-domain, thioredoxin, or glutathione S-transferase) followed by a protease cleavage site and a His tag, and one vector having only an N-terminal His tag. We have previously observed a positive effect on solubility for proteins produced as fusion proteins compared to proteins produced with only a His tag in Escherichia coli. We find this effect to be less pronounced when we compare the yields of purified target protein after removal of the solubilising fusion although large target-dependent variations are seen. On average, the GB1+His fusion gives significantly higher final yields of protein than the thioredoxin+His fusion or the His tag, whereas GST+His gives lower yields. We also note a strong correlation between solubility and target protein size, and a correlation between solubility and the presence of peptide fragments that are predicted to be natively disordered.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1H-15N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.  相似文献   

14.
Warren WD  Lin E  Nheu TV  Hime GR  McKay MJ 《Gene》2000,250(1-2):77-84
Cohesin is an evolutionarily conserved multiprotein complex required to establish and maintain sister chromatid cohesion. Here, we report the cloning and initial characterization of the Drosophila homologue of the fission yeast rad21 cohesin subunit, called Drad21. The Drad21 coding region was localized to centromeric heterochromatin and encodes a 715 amino acid (aa) protein with 42% aa identity to vertebrate Rad21p-homologues, 25% with Scc1p/Mcd1p (S. cerevisiae) and 28% with Rad21p (S. pombe). Sequences with similarity to the sites of proteolytic cleavage identified in Scc1p/Mcd1p are not evident in DRAD21. Northern blot and mRNA in-situ studies show that Drad21 is developmentally regulated, with high levels of expression in early embryogenesis, in S-phase cells of proliferating imaginal tissues, and in the early endocycling cells of the embryonic gut.  相似文献   

15.
Expression and purification of proteins as fusions with glutathione S-transferase (GST) is a standard and widely employed system. In more than 2,500 published studies, GST has been used to facilitate the purification of recombinant proteins, assess protein-protein interactions, and establish protein function. In this report, we provide evidence that GST can be phosphorylated in vitro by protein kinase C-alpha (PKC-alpha) at Ser-93. Therefore, since GST itself may be a target for a number of catalytic enzymes, failure to remove the GST tag from the recombinant protein may lead to inaccurate conclusions.  相似文献   

16.
The third domain of the periplasmic protein TolA from Escherichia coli (TolAIII) was used as a fusion partner in the expression of various proteins from bacteria and eukaryotes. TolAIII is small domain, expressed in high yields as a soluble protein in the cytoplasm of E. coli. Proteins were linked to the C-terminus of TolAIII by a short flexible linker containing sites for endopeptidases. Three different vectors were prepared, containing sites for enterokinase, thrombin or factor Xa. Fusion proteins also contain a His(6)-Ser(2) tag at their N-terminus for easier purification. Up to 90 mg fusion protein per liter bacterial culture was obtained using these vectors. Colicin N R-domain was expressed with this system as a fusion and processed further for functional studies. The yield of final pure R-domain was doubled as compared to the direct expression. The system may prove to be useful in the preparation of other peptides and proteins.  相似文献   

17.
Park DW  Kim SS  Nam MK  Kim GY  Kim J  Rhim H 《BMB reports》2011,44(4):279-284
The glutathione S-transferase (GST) system is useful for increasing protein solubility and purifying soluble GST fusion proteins. However, purifying half of the GST fusion proteins is still difficult, because they are virtually insoluble under non-denaturing conditions. To optimize a simple and rapid purification condition for GST-pyruvate kinase muscle 2 (GST-PKM2) protein, we used 1% sarkosyl for lysis and a 1:200 ratio of sarkosyl to Triton X-100 (S-T) for purification. We purified the GST-PKM2 protein with a high yield, approximately 5 mg/L culture, which was 33 times higher than that prepared using a conventional method. Notably, the GST-high-temperature requirement A2 (GST-HtrA2) protein, used as a model protein for functional activity, fully maintained its proteolytic activity, even when purified under our S-T condition. This method may be useful to apply to other biologically important proteins that become highly insoluble in the prokaryotic expression system.  相似文献   

18.
重组人MBD4蛋白在大肠杆菌中的表达、纯化及活性分析   总被引:1,自引:0,他引:1  
为获得重组人MBD4蛋白,将编码MBD4的开放式阅读框(ORF)插入原核表达载体pGEX6P1 GST基因下游的多克隆位点(MCS).将获得的表达质粒转化入大肠杆菌BL21(DE3) 菌株扩大培养并用IPTG诱导融合蛋白的表达.用谷胱甘肽琼脂糖凝胶 4B亲和介质从菌体裂解液中纯化了GST-MBD4融合蛋白.经过Prescision protease专一性裂解成功去除了融合蛋白上的GST标签.通过Mono Q阴离子交换层析获得了纯度达94%以上的MBD4蛋白,该蛋白具有甲基化DNA结合和糖苷酶生物活性.  相似文献   

19.
We have studied the cleavage efficiency of the protease enterokinase (EK) using the novel vector pESP4. pESP4 is a yeast expression vector equipped with ligation-independent cloning sites, a GST purification tag, and a FLAG epitope tag. EK is used to cleave the FLAG and GST tags leaving the protein of interest without any extraneously added amino acids. We have found that EK is relatively permissive of the amino acid residue downstream of the recognition sequence (the P'1 position). This makes EK an ideal choice to use as a protease to cleave any protein of interest cloned within the pESP4 yeast expression vector.  相似文献   

20.
《FEBS letters》1993,330(3):279-282
Human MDR1 cDNA was introduced into the human cultured cells KB-3-1 and Schizosaccharomyces pombe pmdI null mutant KN3. The drug sensitivity of KB-G2 and KN3/pgp, expressing human P-glycoprotein, was examined. KB-G2 was resistant to the peptide antibiotics valinomycin and gramicidin D as well as having a typical multidrug resistance (MDR) phenotype. KN3/pgp was resistant to valinomycin and actinomycin D, but not to adriamycin. The ATP-hydrolysis-deficient mutant did not confer KN3 resistance to these antibiotics. Human P-glycoprotein expressed in S. pombe seemed to lack N-glycosylation. The N-glycosylation-deficient mutant, however, conferred a typical MDR phenotype on KB-3-1. These results suggest that human P-glycoprotein functions as an efflux pump of valinomycin and actinomycin D in the membrane of S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号