首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We present a computational study of the fluid dynamics in healthy semicircular canals (SCCs) and the utricle. The SCCs are the primary sensors for angular velocity and are located in the vestibular part of the inner ear. The SCCs are connected to the utricle that hosts the utricular macula, a sensor for linear acceleration. The transduction of angular motion is triggered by the motion of a fluid called endolymph and by the interaction of this fluid with the sensory structures of the SCC. In our computations, we observe a vortical flow in the utricle and in the ampulla (the enlarged terminal part of the SCCs) which can lead to flow velocities in the utricle that are even higher than those in the SCCs. This is a fundamentally new result which is in contrast to the common belief that the fluid velocities in the utricle are negligible from a physiological point of view. Moreover, we show that the wall shear stresses in the utricle and the ampulla are maximized at the positions of the sensory epithelia. Possible physiological and clinical implications are discussed.  相似文献   

2.
Using two S phase markers, we determined the cell‐cycle behavior of inner ear supporting cells from two species, the chicken and the oscar. The results indicate that chicken utricular supporting cells divide once and do not return to the cell cycle for at least 7 days. In contrast, supporting cell progeny in the oscar saccule return to S phase after 5 days. While both the chicken utricle and oscar saccule show ongoing supporting cell proliferation, these data indicate that there may be a dedicated recycling population of supporting cells in the oscar saccule but not in the chicken utricle that is responsible for hair cell production. An expulsion of proliferative cell progeny in the chicken utricle after 7 days may be a driving force for proliferation, as well as an explanation for why hair cell numbers do not increase in the chicken utricle with age. This was not seen in the oscar saccule, possibly explaining how this end organ increases in size throughout the adult life of the animal. The absence of S phase cell expulsion, however, does not rule out the role of cell death in the oscar saccule. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 527–535, 1999  相似文献   

3.
Using two S phase markers, we determined the cell-cycle behavior of inner ear supporting cells from two species, the chicken and the oscar. The results indicate that chicken utricular supporting cells divide once and do not return to the cell cycle for at least 7 days. In contrast, supporting cell progeny in the oscar saccule return to S phase after 5 days. While both the chicken utricle and oscar saccule show ongoing supporting cell proliferation, these data indicate that there may be a dedicated recycling population of supporting cells in the oscar saccule but not in the chicken utricle that is responsible for hair cell production. An expulsion of proliferative cell progeny in the chicken utricle after 7 days may be a driving force for proliferation, as well as an explanation for why hair cell numbers do not increase in the chicken utricle with age. This was not seen in the oscar saccule, possibly explaining how this end organ increases in size throughout the adult life of the animal. The absence of S phase cell expulsion, however, does not rule out the role of cell death in the oscar saccule.  相似文献   

4.
Examination of Paleozoic charophyte fructifications using microscopy and high-resolution x-ray synchrotron microtomography has revealed that most of them have a utricle that forms a supplementary calcified cover around the gyrogonite. All Paleozoic families with utricles have been assigned to the Sycidiales. We consider the Moellerinaceae to occupy a central position in the phylogeny of the Charophyta. From these, one group of descendants constitutes the gyrogonites inside the utricles of the Sycidiales; a second descendant goup is thought to be the utricle-free ancestors of the Charales prior to inversion of spiralization and reduction in cell number. The Sycidiales have a multilayered wall and an internal vesicle, but their families are distinguished by diversity in orientation of external cells, complexity of the utricle wall, and in presence or absence of antheridia. The solidly packed structure of the utricle is believed to be an organ protecting the zygote against dessication. We interpret the morphological similarities between Paleozoic Sycidiales and Mesozoic Clavatoraceae, both with a utricle, as homoplasous rather than expressing a true phylogenetic relationship. We confirm that some umbellids might correspond to utricles of charophytes.  相似文献   

5.
6.
摘要 目的:探讨缺氧对豚鼠前庭耳石器椭圆囊毛细胞内兴奋性神经递质谷氨酸的合成及释放的影响。方法:分离4周龄豚鼠双侧椭圆囊进行体外培养,分别置于常氧(21% O2)和低氧(1% O2)环境下处理30 min,利用Western blotting、酶活性检测等方法检测前庭外周感受器椭圆囊斑毛细胞中谷氨酰胺酶的活性和表达水平,评价谷氨酸合成变化情况;利用ELISA、免疫荧光等方法检测椭圆囊组织中谷氨酸含量和毛细胞内谷氨酸分布情况。结果:在给予缺氧处理后,豚鼠椭圆囊毛细胞中谷氨酸合成关键酶谷氨酰胺酶的表达、酶活性均未发生显著性变化(P>0.05);ELISA结果提示,相较于对照组,低氧组椭圆囊组织中谷氨酸水平降低5.6%(对照组vs.缺氧组:15.86±2.19 vs.13.02±1.21,P<0.05);免疫荧光结果提示,相较于对照组,低氧组椭圆囊毛细胞内的谷氨酸更加广泛的分布于毛细胞基底部,而在纤毛一侧分布较少。结论:在体外培养的椭圆囊组织中,低氧处理并未影响毛细胞谷氨酸的合成过程,但会显著增加毛细胞内兴奋性神经递质谷氨酸的释放。  相似文献   

7.
8.
Uni‐variate and multi‐variate statistical methods, based on data taken from dried specimens, were used to determine the morphological variance of Carex hostiana 3 Carex flava agg. hybrids and to establish their parents among members of the C. flava complex. The following hybrids were found: C. demissa 3 hostiana [C. 3 fulva], C. hostiana 3 lepidocarpa [C. ×leutzii] and C. flava 3 hostiana [C. 3 xanthocarpa]. The least variable traits, namely beak length, utricle length, ratio of beak length to the overall utricle length, female spike width, and width of the lowest bract, proved to be the most useful in delimiting the hybrids. Carex flava 3 hostiana specimens usually have long utricles and beaks, wide male and female spikes, as well as wide bracts and leaf blades. Carex hostiana 3 lepidocarpa specimens are characterized by relatively short beaks (with low ratio of beak length to the overall utricle length) and narrow bracts. Common features of C. demissa 3 hostiana specimens, on the other hand, are male spikes with long peduncles, usually longly parted female spikes and a long beak compared to the overall utricle length.  相似文献   

9.
W J Krause 《Acta anatomica》1991,142(1):57-59
The vestibular apparatus of the opossum was examined shortly before and immediately after birth. A band of about 20 sensory cells was observed within the forming utricle by 24 h prior to birth. Stereocilia projecting from the apices of the sensory cells appeared intimately associated with a well-defined population of overlying otoliths. These morphological observations suggest that a functional utricle may be present at the time of birth and together with other senses (tactile, olfaction) may aid the newborn of this species in its migration from the birth canal to the pouch.  相似文献   

10.
It is unknown whether the fish utricle contributes to directional hearing. Here, we report response properties of single utricular fibers in a teleost fish (Dormitator latifrons) to linear accelerations at various stimulus frequencies and axes. Characteristic frequencies ranged from 50–400 Hz (median=80 Hz), and best frequencies shifted from 50 to 250 Hz with stimulus level. Best sensitivity of utricular fibers was distributed from –70 to –40 dB re: 1 g (mean=–52 dB), which is about 30 dB less sensitive than saccular fibers. Q50% fell between 0.16 and 11.50 (mean=2.04) at 15 dB above threshold. We observed temporal response patterns of entrained phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Most utricular fibers were directionally selective with various directional response profiles, and directional selectivity was stimulus-level dependent. Horizontal best-response axes were distributed in a 152° range while mid-sagittal best-response axes were clustered around the fish longitudinal axis, which is consistent with the horizontal orientation of the utricle and morphological polarizations of utricular hair cells. Therefore, results of this study indicate that the utricle in this vertebrate plays an auditory role in azimuth and that utricular fibers extend the response dynamic range of this species in directional hearing.  相似文献   

11.
Floral biology of Aristolochia argentina (Aristolochiaceae)   总被引:2,自引:1,他引:1  
The floral biology of Aristolochia argentina (Aristolochiaceae) was studied in natural populations in Córdoba, Argentina. This native vine has flowers that attract mainly scuttle fly pollinators of the genus Megaselia (Phoridae). The trap-like perianth is formed by a limb, a tube, and a basal utricle. The limb produces an odor that recalls decaying plant tissues, which apparently mimics the natural oviposition substrate of the flies. The insects stay entrapped inside the utricle for approximately 24 h, making contact with the sexual organs of the flower. When released, they can become captured again in other flowers. The mechanisms of herkogamy and protogyny are efficient. Although self-compatibility exists, as demonstrated by the high percentage of fruits produced by geitonogamy, fruits were not produced under natural or artificial autogamous conditions. Natural pollination showed significantly lower fruit set than xenogamous and geitonogamous crosses.  相似文献   

12.
徐晗  李振宇 《广西植物》2019,39(10):1416-1419
我国有记录的苋属植物20余种,主要为外来杂草。苋属植物形态相近,常被误鉴。作者从送检的误鉴的标本中发现2个新外来种,根据拉丁文名种加词释义,分别命名为鲍氏苋(Amaranthus powellii S. Watson)和布氏苋(A. bouchonii Thell.)。鲍氏苋和布氏苋形态相近,分别产自美国西南部和欧洲,雌雄同株,具3~5雌花花被片,花被片不等长,等于或短于胞果,胞果开裂或不开裂。鲍氏苋和布氏苋可通过花被片数目和形态、胞果是否开裂、苞片大小相区分。该文还提供了鲍氏苋和布氏苋的中文形态描述及彩色图片,并对其分布、生境和危害状况进行了报道。  相似文献   

13.
Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.  相似文献   

14.
To clarify whether the unique postural control of the upside‐down swimming catfish (Synodontis nigriventris, family Mochokidae) is related to the histological characteristics of the otolith organs, we performed light microscopic observation of the utricle, the saccule and the lagena. The histological aspects of the otolith organs were compared between S. nigriventris and Synodontis multipunctatus, which belong to the same genus. S. multipunctatus usually shows upside‐up swimming posture except for feeding behaviour near water surface. As controls, we additionally used a miniature catfish, Corydoras paleatus and goldfish, Carassius auratus, which shows upside‐up swimming posture. We concluded that the structural aspects of the otolith organs did not cause the unique postural control of S. nigriventris. Light microscopic observation clarified the following aspects: (1) The utricle of S. nigriventris was located at the anterior region of the otocyst and under the semicircular canals, and the saccule and the lagena were located at the posteroventral region of the otocyst like those of S. multipunctatus and the other two fishes. (2) The hair cells of the utricle were arranged on the horizontal plane of the fishes with a variation in cell size at the ventral and ventrolateral sites in S. nigriventris, S. multipunctatus and the other two fishes. (3) The hair cells of the saccule and lagena of S. nigriventris, S. multipunctatus and C. auratus presented perpendicular to the horizontal plane of the fish. (4) Region‐specific differences in the size and shape of the hair cells of S. nigriventris were observed along the three‐dimensional axes of the otolith organs like those of S. multipunctatus and the other two fishes. It is unlikely that the unique postural control of upside‐down catfish is related to the localization of the utricle, the saccule and the lagena and the distribution of the different types of hair cell of the otolith organs. Furthermore, the distribution of the hair cells suggests that the otolith organs in S. nigriventris can detect three‐dimensional postural changes like the organs of other fishes showing generally observed upside‐up swimming posture.  相似文献   

15.
Sajan SA  Warchol ME  Lovett M 《Genetics》2007,177(1):631-653
We describe the most comprehensive study to date on gene expression during mouse inner ear (IE) organogenesis. Samples were microdissected from mouse embryos at E9-E15 in half-day intervals, a period that spans all of IE organogenesis. These included separate dissections of all discernible IE substructures such as the cochlea, utricle, and saccule. All samples were analyzed on high density expression microarrays under strict statistical filters. Extensive confirmatory tests were performed, including RNA in situ hybridizations. More than 5000 genes significantly varied in expression according to developmental stage, tissue, or both and defined 28 distinct expression patterns. For example, upregulation of 315 genes provided a clear-cut "signature" of early events in IE specification. Additional, clear-cut, gene expression signatures marked specific structures such as the cochlea, utricle, or saccule throughout late IE development. Pathway analysis identified 53 signaling cascades enriched within the 28 patterns. Many novel pathways, not previously implicated in IE development, including beta-adrenergic, amyloid, estrogen receptor, circadian rhythm, and immune system pathways, were identified. Finally, we identified positional candidate genes in 54 uncloned nonsyndromic human deafness intervals. This detailed analysis provides many new insights into the spatial and temporal genetic specification of this complex organ system.  相似文献   

16.
The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, we examined, at different developmental stages, the inner ears of mice lacking both Otx1 and Otx2 genes. In wild-type inner ears, Otx1, but not Otx2, was expressed in the lateral canal and ampulla, as well as part of the utricle. Ventral to the mid-level of the presumptive utricle, Otx1 and Otx2 were co-expressed, in regions such as the saccule and cochlea. Paint-filled membranous labyrinths of Otx1-/- mutants showed an absence of the lateral semicircular canal, lateral ampulla, utriculosaccular duct and cochleosaccular duct, and a poorly defined hook (the proximal part) of the cochlea. Defects in the shape of the saccule and cochlea were variable in Otx1-/- mice and were much more severe in an Otx1-/-;Otx2(+/)- background. Histological and in situ hybridization experiments of both Otx1-/- and Otx1-/-;Otx2(+/)- mutants revealed that the lateral crista was absent. In addition, the maculae of the utricle and saccule were partially fused. In mutant mice in which both copies of the Otx1 gene were replaced with a human Otx2 cDNA (hOtx2(1)/ hOtx2(1)), most of the defects associated with Otx1-/- mutants were rescued. However, within the inner ear, hOtx2 expression failed to rescue the lateral canal and ampulla phenotypes, and only variable rescues were observed in regions where both Otx1 and Otx2 are normally expressed. These results suggest that both Otx genes play important and differing roles in the morphogenesis of the mouse inner ear and the development of its sensory organs.  相似文献   

17.
We applied a micro-cDNA-based subtraction method to identify genes expressed in the regenerating sensory epithelia (SE) of the chicken inner ear. Sensory hair cells in the avian utricle SE are in a constant state of turnover, where dying hair cells are replaced by new ones derived from supporting cells. In contrast, hair cells in the cochlea remain quiescent unless damaged. We used this difference to enrich for utricle-specific genes, using reiterative cDNA subtraction and demonstrate enrichment for utricle-specific sequences. A total of 1710 cDNA sequence reads revealed the presence of many cDNAs encoding known structural components of the SE (for example, Harmonin and beta-tectorin), proteins involved in cellular proliferation, such as P311, HIPK2, and SPALT1, among many others of unknown function. These libraries are the first of their kind and should prove useful for the discovery of candidate genes for hearing disorders, regenerative and apoptotic pathways, and novel chicken ESTs.  相似文献   

18.
Differentiation in the size and number of seeds among populations or particular individuals of a given species may depend on genetic features and environmental conditions. The objective of our study was to answer two questions: whether any differences exist in the size and shape of utricles among Carex spicata populations growing in several plant communities and whether the hypothesized differences remain constant in ‘common garden’ conditions (i.e. if the sedges grown in different plant communities are evolving distinctly separate ecotypes). We studied utricle morphological traits (projected area, width, length, W/L ratio and projected perimeter) and number of utricles per spike collected from plants grown in five different plant communities (natural sites) and from plants transferred to common garden conditions. C. spicata utricles showed significant variability of morphological traits that depended on the plant community of origin. Among five plant communities, the largest utricles were found in Agropyron repens–Urtica dioica and Convolvulo arvensis–Agropyretum repentis communities, while the smallest ones were in plants from the Lolio-Plantaginetum community. The similarity of the analyzed populations regarding sedge utricle traits corresponded to the similarity of plant communities where the populations had grown. Moreover, the differences in utricle traits collected from natural conditions remained stable in common garden conditions. This indicated that differences in traits among utricles had a physiological dependence on different biotope conditions or different interspecific interactions prevailing in the particular plant communities. The relationship between the similarities in the diaspores of the populations studied and the similarities in the ecological conditions of the communities may also indicate that the variability of utricles is important for evolution and adaptation.The results support the hypothesis that C. spicata populations in different communities are producing separate ecotypes, i.e. specific species forms with genetically fixed traits adapted to narrowly determined habitat conditions.  相似文献   

19.
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb-/-, pRb-/- utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb-/- cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of pRb-/- cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb-/- cochlea and utricle is centered on E2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb-/-cochlea or utricle. In pRb-/- cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involving in proliferation and survival are enriched in pRb-/-utricle. Clustering analysis showed that the pRb-/- inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRbflox/flox) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.  相似文献   

20.
Yang H  Zhao X  Xu Y  Wang L  He Q  Lundberg YW 《PloS one》2011,6(5):e20498
Otoconia are bio-crystals anchored to the macular sensory epithelium of the utricle and saccule in the inner ear for motion sensing and bodily balance. Otoconia dislocation, degeneration and ectopic calcification can have detrimental effects on balance and vertigo/dizziness, yet the mechanism underlying otoconia formation is not fully understood. In this study, we show that selected matrix components are recruited to form the crystal matrix and sequester Ca(2+) for spatial specific formation of otoconia. Specifically, otoconin-90 (Oc90) binds otolin through both domains (TH and C1q) of otolin, but full-length otolin shows the strongest interaction. These proteins have much higher expression levels in the utricle and saccule than other inner ear epithelial tissues in mice. In vivo, the presence of Oc90 in wildtype (wt) mice leads to an enrichment of Ca(2+) in the luminal matrices of the utricle and saccule, whereas absence of Oc90 in the null mice leads to drastically reduced matrix-Ca(2+). In vitro, either Oc90 or otolin can increase the propensity of extracellular matrix to calcify in cell culture, and co-expression has a synergistic effect on calcification. Molecular modeling and sequence analysis predict structural features that may underlie the interaction and Ca(2+)-sequestering ability of these proteins. Together, the data provide a mechanism for the otoconial matrix assembly and the role of this matrix in accumulating micro-environmental Ca(2+) for efficient CaCO(3) crystallization, thus uncover a critical process governing spatial specific otoconia formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号