首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.  相似文献   

2.
The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the "light" 30S dynein ATPase fractions are more activated than the "heavy" 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase activities, on the extractability of proteins from the axoneme, and on the turbidity response of demembranated axonemes to ATP. They also provide a method that frequently yields 30S dynein fractions with ATPase activities that are activated over twofold by added calmodulin.  相似文献   

3.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

4.
Flagella of Chlamydomonas mutants lacking the central pair of microtubules or radial spokes do not beat; however, axonemes isolated from these mutants were found to display vigorous bending movements in the presence of ATP and various salts, sugars, alcohols, and other organic compounds. For example, about 15% of the total axonemes isolated from pf18, a mutant lacking the central pair, displayed beating in the presence of 10 mM MgSO(4) and 0.2 mM ATP at about 22 Hz, while none beat with the same concentration of ATP and < or = 5 mM or > or = 25 mM MgSO(4). The beat frequency and waveform of beating pf18 axonemes were similar to those of wild type axonemes beating under the same conditions. Similarly, 10-50% of the axonemes beat in the presence of 0.5 M sucrose, 2.0 M glycerol, or 1.7 M[10% (v/v)] ethanol. The appearance of motility did not correlate with the change in axonemal ATPase; however, these substances at those concentrations commonly increased the amplitude of nanometer-scale oscillation (hyper-oscillation) in pf18 axonemes, as well as the extent of ATP-induced sliding disintegration of protease-treated axonemes. Axonemes of double mutants lacking both the central pair and various subspecies of inner-arm dynein also beat at increased MgSO(4) concentrations, but axonemes lacking outer-arm dynein in addition to the central pair did not beat. These and other observations suggest that small molecules perturb the regulation of microtubule sliding through some change in water activity or osmotic stress. Axonemes must have an intrinsic ability to beat without the central pair/radial spokes under a variety of non-physiological solution conditions, as long as the outer dynein arms are present. Apparently, the major function of the central pair/radial spoke structures is to restore this activity under physiological conditions.  相似文献   

5.
The effects of thioura and of several substituted thioureas–phenylthiourea, α-naphtylthiourea, metiamide, and burimamide–on dynein ATPase have been studied. The substituted thioureas are over 30 times more potent than thiourea in causing enhancement of 30S dynein ATPase activity and inhibition of 14S dynein ATPase activity. The effects of thiourea and phenylthiourea can be prevented by very low concentrations of β-mercaptoethanol or dithiotheritol. Axonemal ATPase is also enhanced by the thioureas, but the reaction proceeds more slowly than for solubilized 30S dynein. Enhancement of 30S dynein ATPase by metiamide is prevented by low (~ 1 μM) concentrations of ATP and, less effectively, by AMP-PNP, but not by AMP-PCP even though the latter is a stronger inhibitor of 30S dynein ATPase than is AMP-PNP. The thioureas inhibit the ATP-induced decrease in turbidity (measured as ΔA350) of axonemal suspensions. Inhibition of the turbidity response is also prevented by low concentrations of β-mercaptoethanol, but, in contrast to the irreversible enhancement of ATPase activity, inhibition of the turbidity response is largely reversible. The ability of 30S dynein to rebind onto twice extracted axonemes is not changed by treatment with phenylthiourea or metiamide. These observations indicate that the thioureas react with at least two sets of SH or S–S groups on axonemes. Reaction with the group(s) on the 30S dynein causes an apparently irreversible enhancement of ATPase activity. Reaction with another group(s) causes a reversible inhibition of the turbidity response.  相似文献   

6.
Quantitative analyses of ATP hydrolysis coupled to movement of eukaryotic flagella is important for understanding the relationship between ATP hydrolysis and movement. The difference in ATPase activity between intact motile axonemes (that is the cytoskeletal core of flagella) and homogenized or immotile axonemes has been assumed to be coupled to movement. However, recent findings on rates of steps in the dynein ATPase cycle and the effect of interaction with microtubules on those steps call for reassessment of movement-coupled ATPase. From these studies, it is clear that dynein ATPase activity is not as tightly coupled to interaction with microtubules as myosin ATPase activity is coupled to interaction with actin. The method by which axonemal movement is inhibited will critically affect the interpretation of difference in ATPase activity. If the homogenization or similar methods uncouple dynein, the difference in ATPase activity is not a useful measurement. Greater understanding of the relationship between dynein kinetics and axonemal movement may be obtained by use of conditions and substrates with known effects at specific steps in the dynein mechanochemical cycle and quantitating their effects on movement.  相似文献   

7.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

8.
The inhalational anesthetic halothane reversibly inhibits the motility of sea urchin sperm dose-dependently at concentrations up to 5 mM. Experiments with Triton X-100 extracted, trypsinized axonemes showed that halothane has no effect on the rate of axonemal disintegration in the presence of ATP. These results suggest that halothane inhibits flagellar activity by acting at a site other than the dynein ATPase component of the flagellum.  相似文献   

9.
When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity.  相似文献   

10.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

11.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

12.
The fine structure, protein composition, and roles in flagellar movement of specific axonemal components were studied in wild-type Chlamydomonas and paralyzed mutants pf-14, pf-15A, and pf-19. Electron microscope examination of the isolated axoneme of pf-14 showed that it lacks the radial spokes but is otherwise structurally normal. Comparison of isolated axonemes of wild type and pf-14 by sodium dodecyl sulfate-acrylamide gel electrophoresis indicated that the mutant is missing a protein of 118,000 mol wt; this protein is apparently a major component of the spokes. Pf-15A and pf-19 lack the central tubules and sheath; axonemes of these mutants are missing three high molecular weight proteins which are probably components of the central tubule-central sheath complex. Under conditions where wild-type axonemes reactivated, axonemes of the three mutants remained intact but did not form bends. However, mutant and wild-type axonemes underwent identical adenosine triphosphate-induced disintegration after treatment with trypsin; the dynein arms of the mutants are therefore capable of generating interdoublet shearing forces. These findings indicated that both the radial spokes and the central tubule-central sheath complex are essential for conversion of interdoublet sliding into axonemal bending. Moreover, because axonemes of pf-14 remained intact under reactivating conditions, the nexin links alone are sufficient to limit the amount of interdoublet sliding that occurs. The axial periodicities of the central sheath, dynein arms, radial spokes, and nexin links of Chlamydomonas were determined by electron microscopy using the lattice-spacing of crystalline catalase as an internal standard. Some new ultrastructural details of the components are described.  相似文献   

13.
To study dynein arm activity at high temporal resolution, axonemal sliding was measured field by field for wild type and dynein arm mutants of Tetrahymena thermophila. For wt SB255 cells, when the rate of data acquisition was 60 fps, about 5x greater than previously published observations, sliding was observed to be discontinuous with very high velocity sliding (average 196 microm/sec) for a few msec (1 or 2 fields) followed by a pause of several fields. The sliding velocities measured were an order of magnitude greater than rates previously measured by video analysis. However, when the data were analyzed at 12 fps for the same axonemes, consistent with previous observations, sliding was linear as the axonemes extended several times their original length with an average velocity of approximately 10 microm/sec. The pauses or stops occurred at approximately 200 and 300% of the initial length, suggesting that dynein arms on one axonemal doublet were initially active to the limit of extension, and then the arms on the next doublet became activated. In contrast, in a mutant where OADs are missing, sliding observed at 60 fps was continuous and slow (5 microm/sec), as opposed to the discontinuous high-velocity sliding of SB255 and of the mutant at the permissive temperature where OADs are present. High-velocity step-wise sliding was also present in axonemes from an inner arm dynein mutant (KO6). These results indicate that the high-speed discontinuous pattern of sliding is produced by the mechanochemical activity of outer arm dynein. The rate of sliding is consistent with a low duty ratio of the outer arm dynein and with the operation of each arm along a doublet once per beat.  相似文献   

14.
The role of axonemal components in ciliary motility   总被引:3,自引:0,他引:3  
1. The axoneme is the detergent-insoluble cytoskeleton of the cilium. 2. All axonemes generate movement by the same fundamental mechanism: microtubule sliding utilizing ATP hydrolysis during a mechanochemical cycling of dynein arms on the axonemal doublets. 3. Structure, fundamental biochemistry and physiology of the axoneme are conserved evolutionarily, but the phenotypes of beating movements and the responses to specific cytoplasmic signals differ greatly from organism to organism. 4. A model of asynchronous dynein arm activity--the switch point hypothesis--has been proposed to account for cyclic beating in the face of unidirectional sliding. The model suggests that the diversity of beat phenotype may be explicable by changes in the timing of switching between active and inactive states of doublet arm activity. Evidence of axonemal splitting in arrested axonemes provides new support for the hypothesis.  相似文献   

15.
The 0.5 M KCl-treatment solubilizes the outer arms from sea urchin sperm axonemes. Approximately 30 percent of A-polypeptide, corresponding to dynein 1 in SDS- polyacrylamide gel, was solubilized by this treatment (as SEA-dynein 1). Electron microscopic observation indicated that the extracted axonemes lacked the outer arms in various degrees. The DEA-dynein 1 was that the extracted axonemes lacked the outer arms in various degrees. The SEA-dyenin 1 was purified and an antiserum against it was prepared in rabbits. The specificity of antiserum to dynein 1 was determined by immunoelectrophoresis and ouchterlony’s double-diffusion test. The anti-dynein 1 serum inhibited ATPase activity of purified SEA-dynein 1 by 95 percent. By the indirect peroxidase-conjugated antibody method, the loci of SEA-dynein 1 within the intact, salt- extracted and mechanically disrupted axonemes were determined to be the outer arms: deposition of electron-dense materials which represents their localization was detected at the distal ends of the outer arms, in the case of intact axonemes. The 5-6 cross- bridge was hardly decorated. No decoration was seen in the salt-extracted axonemes lacking all the outer arms. In disrupted axonemes, which consist of single to several peripheral doublets, electron-dense materials were deposited only on the outer arms. Approximately 73 percent of axonemal ATPase activity sensitive to antiserum was solubilized by repeated salt-extractions. One-half of A-polypeptide (SEA-dynein 1 located at the outer arms) was contained in the pooled extracts. The extracted axonemes contained another half of A-polypeptide (SUA-dynein 1 supposed to locate at the inner arms) and retained 31 percent of axonemal ATPase activity that was almost resistant to antiserum. Solubilized SUA-dynein 1 was immunologically the same as SEA-dynein 1. This result indicates that in situ SUA-dynein 1 did not receive anti-dynein 1 antibodies, coinciding with the result obtained for salt-extracted axonemes lacking all the outer arms by the enzyme-antibody method mentioned above. These observations suggest that immunological dissimilarity in dynein 1 between outer and inner arms but do not tell us that the inner arms do not contain dynein 1.  相似文献   

16.
The effects of five sulfhydryl (SH) reagents – N-ethylmaleimide (NEM), a spin-labeled maleimide (SLM), N-N′-phenylenedimaleimide (PPDM), bis(4-fluoro-3-nitrophenyl)sulfone (FNS), and carboxypyridine disulfide (CPDS) – on glycerol-treated, Triton X-100-demembranated ciliary axonemes of Tetrahymena, on the 30S and 14S dyneins extracted from such axonemes, and on the residual ATPase activity remaining associated with axonemes that have been extracted twice with Tris-EDTA have been examined as a function of pH in the range 6.9–8.6. Preincubation of axonemes and of solubilized 30S dynein with low concentrations of each of the five SH reagents, at 0°C and at 25°C, caused enhancement of the latent ATPase activity. PPDM was the most effective reagent, causing half-maximal enhancement (after 18 h at 0°C) at ~ 0.5 μM, corresponding to 0.19 moles/105 g axonemal protein. The rate constants, ka, for the enhancement reaction at 0°C depended on whether the 30S dynein was in situ or solubilized; the ratio ka (in situ) /ka (solubilized) was > 1 for NEM, ~ 1 for PPDM, and < 1 for FNS. For each SH reagent except CPDS, ka (at 0°C) increased markedly with increasing pH in the range pH 6.9–8.6; for CPDS ka increased only about fourfold. At long times of preincubation and high concentrations of NEM, SLM, PPDM, and CPDS, the enhancement of ATPase activity was followed by a loss of activity. The values of kL, the rate constants for loss of ATPase activity from the peak enhanced level, were much lower than the corresponding values for ka, and increased with increasing pH. With SLM and PPDM, inhibition continued until the ATPase activity was almost completely inhibited. With NEM, however, the initial rate of loss from the peak enhanced value decreased as the ATPase activity returned toward the control (unmodified) level, and further inhibition was very slow. The differences in degree of inhibition obtained with SLM as compared to NEM suggest that there are at least two classes of inhibitory SH groups on 30S dynein. The ATPase activity of 14S dynein was only inhibited by preincubation with NEM, SLM, PPDM, and, to a lesser extent, CPDS; kL increased with increasing pH. Preincubation of 14S dynein with FNS yielded conflicting results when the reaction was “stopped” by adding dithiothreitol. When 14S dynein was preincubated at 0 C with FNS and the ATPase activity was then assayed at 25°C, a biphasic pattern of enhancement followed by inhibition was obtained. The residual ATPase activity of twice-extracted axomenes was relatively insensitive to each of the SH reagents studied; an initial rapid loss of some 20–40% of the ATPase activity occurred, followed by a very slow further loss of activity. Increasing the pH increased this slow rate of inhibition. The residual ATPase activity of unmodified twice-extracted axonemes decreased slightly with increasing pH, in contrast to the slight increase observed with increasing pH for the ATPase activity of axonemes and of solubilized 30S and 14S dyneins. The presence of ATP during preincubation of axonemes with PPDM at O°C prevented the enhancement of ATPase activity; only a slow loss of ATPase activity was observed. This rate of loss of ATPase activity was slower than the rate of loss observed (after peak enhancement of activity was reached) when PPDM reacted with axonemes in the absence of ATP. In these properties the SH groups of 30s dynein responsible for the enhancement of latent ATPase activity and for the inhibition of ATPase activity do not resemble the SH1 and SH2 groups of myosin, respectively, since the presence of ATP increases the rates of reaction of SH1 and SH2 of myosin with SH reagents.  相似文献   

17.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

18.
Treatment of demembranated sea urchin sperm axonemes with an extraction solution containing 0.6 M NaCl, pH 7.0 for 10 min at 4 degrees C yields a solution of dynein 1 having a low, latent specific ATPase activity of about 0.25 mumol of Pi mg(-1) min(-1). Exposure of this dynein solution to 0.1% Triton-X-100 for 10 min at 25 degrees C causes an increase in its ATPase activity to about 3 mumol of Pi mg(-1) min(-1). A similar activation can be obtained by treating at 42 degrees C or by reacting with 60 mol of p-chloromercuribenzene sulfonate/10(6) g of protein. The effects of these activating procedures are not additive, suggesting that they lead to a common activated state. Purification of the latent activity dynein 1 by sucrose density gradient centrifugation yields a monodisperse preparation sedimenting at 21 S, and having a molecular weight of 1,250,000 as determined by sedimentation diffusion and sedimentation equilibrium. Activation of the latent dynein 1 with Triton X-100 converts it to a form sedimenting at 10 to 14 S. The 21 S dynein is also converted to a 10 S form by dialysis against 5 mM imidazole/NaOH buffer, 0.1 mM EDTA, 5 mM 2-mercaptoethanol, pH 7, although in this case, the ATPase activity is increased only about 3-fold, with another 3-fold activation being obtainable upon subsequent treatment with Triton X-100. The 21 S latent form of dynein 1 may represent the intact dynein arms that form moving cross-bridges and generate active sliding between adjacent doublet tubules of the flagellar axoneme. Electrophoretic analysis on polyacrylamide gels in the presence of sodium dodecyl sulfate suggests a model in which the 21 S dynein 1 particle is composed of three subunits of about 330,000 daltons and one of each of three medium weight subunits of 126,000, 95,000, and 77,000 daltons. When latent dynein 1 is added back to NaCl-extracted axonemes in the presence of 0.15 M NaCl, it recombines stoichiometrically and restores the arms on the doublet tubules with a 6-fold activation of its ATPase activity measured in the absence of KCl.  相似文献   

19.
The effect of solution composition and enzymic proteolysis on axonemes prepared from the sperm of sea urchins, Tripneustes gratilla, has been investigated. Aliquots of axonemes, prepared by treatment of sperm with Triton X-100 and differential centrifugation, were transferred to solutions of different composition with and without intervening tryptic proteolysis, and the particle conformations observed by dark-field and electron microscopy. In most solutions particles in partially digested preparations underwent conformational transformations to coiled or helix-like forms. Proteolysis was accompanied by an increase in the ATPase activity of the digest: by centrifuging down the insoluble digestion products it was shown that digestion resulted in the appearance of ATPase activity in the soluble phase with a concomitant decrease in ATPase activity in the pellet fraction. Gel electrophoresis showed this corresponded to the appearance of dynein in the supernatant and a decrease in dynein associated with the insoluble fraction. Supernatant dynein had a greater specific ATPase activity than dynein extracted from axonemes. Observations on specimens prepared for electron microscopy by thin sectioning allowed a rough correlation to be made between the dark-field observations, chemical analyses, and morphological alterations attendant with the proteolysis and solution conditions. It is concluded that in the intact axoneme the doublet tubules are under considerable tension and that proteolytic destruction of physical restraining elements allows spontaneous conformational alterations of the digestion products. In addition, proteolysis increases the specific ATPase activity of dynein and removes a portion of it from the axonemal structure.  相似文献   

20.
A physical model of microtubule sliding in ciliary axonemes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ciliary movement is caused by coordinated sliding interactions between the peripheral doublet microtubules of the axoneme. In demembranated organelles treated with trypsin and ATP, this sliding can be visualized during progressive disintegration. In this paper, microtubule sliding behavior resulting from various patterns of dynein arm activity and elastic link breakage is determined using a simplified model of the axoneme. The model consists of a cylindrical array of microtubules joined, initially, by elastic links, with the possibility of dynein arm interaction between microtubules. If no elastic links are broken, sliding can produce stable distortion of the model, which finds application to straight sections of a motile cilium. If some elastic links break, the model predicts a variety of sliding patterns, some of which match, qualitatively, the observed disintegration behavior of real axonemes. Splitting of the axoneme is most likely to occur between two doublets N and N + 1 when either the arms on doublet N + 1 are active and arms on doublet N are inactive or arms on doublet N - 1 are active while arms on doublet N are inactive. The analysis suggests further experimental studies which, in conjunction with the model, will lead to a more detailed understanding of the sliding mechanism, and will allow the mechanical properties of some axonemal components to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号