首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
The SecY protein is a membrane-bound factor required for bacterial protein export and embedded in the cytoplasmic membrane by its 10 transmembrane segments. We previously proposed a topology model for this protein by adapting the Manoil-Beckwith TnphoA approach, a genetic method to assign local disposition of a membrane protein from the enzymatic activity of the alkaline phosphatase (PhoA) mature sequence attached to the various regions. SecY-PhoA hybrid proteins with the PhoA domain exported to the periplasmic side of the membrane have been obtained at the five putative periplasmic domains of the SecY sequence. We now extended this method to apply it to follow export of the newly synthesized PhoA domain. Trypsin treatment of detergent-solubilized cell extracts digested the internalized (unfolded) PhoA domain but not those exported and correctly folded. One of the hybrid proteins was cleaved in vivo after export to the periplasm, providing a convenient indication for the export. Results of these analyses indicate that export of the PhoA domain attached to different periplasmic regions of SecY occurs rapidly and requires the normal functioning of the secY gene supplied in trans. Thus, this membrane protein with multiple transmembrane segments contains multiple export signals which can promote rapid and secY-dependent export of the PhoA mature sequence attached to the carboxyl-terminal sides.  相似文献   

2.
Using a reconstitution system for protein translocation, the involvement of SecY in the translocation of secretory proteins across the cytoplasmic membrane of Escherichia coli was studied. Anti-SecY antibodies raised against the N- and C-terminal sequences prevented the functional reconstitution of the translocation system. Depletion of SecY from the solubilized membrane preparation was performed by treatment with anti-SecY IgG, followed by removal of IgG with protein A-agarose. The SecY-depleted preparation was inactive as to functional reconstitution. However, reconstitution with it was demonstrated in the presence of a protein fraction, which was released from the anti-SecY immunoprecipitate upon addition of the SecY fragment used to raise the antibody. Reconstitution with the SecY-depleted membrane fraction was also demonstrated in the presence of a purified SecY preparation. OmpT proteinase specifically cleaved SecY in the solubilized membrane preparation. The cleavage was accompanied by a decrease in the reconstituted activity. Based on these findings we conclude that SecY is an indispensable component of the secretory machinery.  相似文献   

3.
As an approach for studying how SecY, an integral membrane protein translocation factor of Escherichia coli, interacts with other protein molecules, we isolated a dominant negative mutation, secY-d1, of the gene carried on a plasmid. The mutant plasmid severely inhibited export of maltose-binding protein and less severely of OmpA, when introduced into sec+ cells. It inhibited growth of secY and secE mutant cells, but not of secA and secD mutant cells or wild-type cells. The mutation deletes three amino acids that should be located at the interface of cytoplasmic domain 5 and transmembrane segment 9. We also found that some SecY-PhoA fusion proteins that lacked carboxy-terminal portions of SecY but retain a region from periplasmic domain 3 to transmembrane segment 7 were inhibitory to protein export. We suggest that these SecY variants are severely defective in catalytic function of SecY, which requires cytoplasmic domain 5 and its carboxy-terminal side, but retain the ability to associate with other molecules of the protein export machinery, which requires the central portion of SecY; they probably exert the 'dominant negative' effects by competing with normal SecY for the formation of active Sec complex. These observations should provide a basis for further genetic analysis of the Sec protein complex in the membrane.  相似文献   

4.
Y Akiyama  K Ito 《The EMBO journal》1985,4(12):3351-3356
The product of the secY (prlA) gene (the SecY protein) involved in protein export in Escherichia coli was overproduced and localized in the cytoplasmic (inner) membrane. Because of its strong interaction with a non-ionic detergent (NP40), it partitioned into the detergent layer during electroblotting through a NP40-containing gel (detergent blotting), and it formed a horizontal streak in the O'Farrell two-dimensional gel electrophoretic system. Consequently, we developed an alternative two-dimensional gel procedure, which proved useful for analysis of integral membrane proteins, especially in combination with detergent blotting. SDS-gel electrophoresis was carried out successively through gels of lower (first dimension) and higher (second dimension) sieving effects. Many membrane proteins, unlike soluble proteins, formed spots off and above the diagonal line, and all of these spots partitioned exclusively into the detergent layer. A characteristic pattern of integral membrane proteins of E. coli was thus obtained and the spot of the SecY protein in the cytoplasmic membrane was identified even when it was not overproduced. These results show that the gene secY specifies an integral membrane component of the protein export machinery.  相似文献   

5.
Bacteria employ the SecA motor protein to push unfolded proteins across the cytoplasmic membrane through the SecY protein‐conducting channel complex. The crystal structure of the SecA–SecY complex shows that the intramolecular regulator of ATPase1 (IRA1) SecA domain, made up of two helices and the loop between them, is partly inserted into the SecY conducting channel, with the loop between the helices as the main functional region. A computational analysis suggested that the entire IRA1 domain is structurally autonomous, and was the basis to synthesize peptide analogs of the SecA IRA1 loop region, to the aim of investigating its conformational preferences. Our study indicates that the loop region populates a predominantly flexible state, even in the presence of structuring agent. This provides indirect evidence that the SecA loop–SecY receptor docking involves loop‐mediated opening of the SecY channel. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
Genetic and biochemical studies have shown that the product of the Escherichia coli secY gene is an integral membrane protein with a central role in protein secretion. We found the Bacillus subtilis secY homologue within the spc-alpha ribosomal protein operon at the same position occupied by E. coli secY. B. subtilis secY coded for a hypothetical product 41% identical to E. coli SecY, a protein thought to contain 10 membrane-spanning segments and 11 hydrophilic regions, six of which are exposed to the cytoplasm and five to the periplasm. We predicted similar segments in B. subtilis SecY, and the primary sequences of the second and third cytoplasmic regions and the first, second, fourth, fifth, seventh, and tenth membrane segments were particularly conserved, sharing greater than 50% identity with E. coli SecY. We propose that the conserved cytoplasmic regions interact with similar cytoplasmic secretion factors in both organisms and that the conserved membrane-spanning segments actively participate in protein export. Our results suggest that despite the evolutionary differences reflected in cell wall architecture, Gram-negative and Gram-positive bacteria possess a similar protein export apparatus.  相似文献   

8.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

9.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

10.
Basic amino acid residues were introduced into an extracellular (periplasmic) domain, preceding a membrane-spanning hydrophobic domain, of SecY, an integral cytoplasmic membrane protein. The localization of the domain was monitored as to the alkaline phosphatase activity of TnPhoA fused adjacent to the domain. The alkaline phosphatase activity of such Escherichia coli cells drastically decreased when positive charges were introduced, indicating that on the introduction the SecY domain showed a change in localization from the periplasm to the cytoplasm. In another experiment, positive charges were introduced to the same periplasmic domain of another SecY-PhoA fusion protein, in which PhoA is fused to the cytoplasmic domain of SecY following the particular hydrophobic domain. The alkaline phosphatase activity increased drastically when positive charges were introduced, indicating that the SecY domain fused to PhoA showed a change in localization from the cytoplasm to the periplasm. In both experiments, the removal of a large amino-terminal portion of the SecY domain did not alter the effect of the positive charge introduction. Changes in localization of SecY domains thus demonstrated were also supported by a protease accessibility test on spheroplasts. It is proposed that a positively charged region adjacent to a membrane-embedded hydrophobic region tends to be stabilized on the cytoplasmic surface of the membrane, which in turn endows the hydrophobic region with the ability to act as a stop-transfer sequence or a signal sequence and consequently determines the orientation of the hydrophobic region in the membrane.  相似文献   

11.
Subcellular sites for bacterial protein export   总被引:8,自引:0,他引:8  
Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA‐YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre‐AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre‐)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis. The localization patterns of these proteins suggest that the Sec machinery is organized in spiral‐like structures along the cell, with most of the translocases organized in specific clusters along these structures. However, this localization appears to be independent of the helicoidal structures formed by the actin‐like cytoskeletal proteins, MreB or Mbl. Interestingly, the specific localization of SecA is dynamic, and depends on active translation. Moreover, reducing the phosphatidylglycerol phospholipids content in the bacterial membrane results in delocalization of SecA, suggesting the involvement of membrane phospholipids in the localization process. These data show for the first time that, in contrast to the recently reported uni‐ExPortal site in the coccoïd Streptococcus pyogenes, multiple sites dedicated to protein export are present in the cytoplasmic membrane of rod‐shaped B. subtilis.  相似文献   

12.
The spc operon of Escherichia coli encodes 11 ribosomal proteins and SecY. The secY gene and downstream rpmJ encoding a ribosomal protein, L36, are located distal to the promoter of the spc operon. It has been suggested that the stability of SecY mRNA depends on rpmJ unless a rho-independent terminator is inserted immediately downstream of secY. Moreover, it has been suggested that RpmJ is dispensable for E. coli. We constructed rpmJ null strains, AY101 (DeltarpmJ::tetA) and AY201 (DeltarpmJ::cat), by replacing rpmJ with tetA, which encodes a membrane protein responsible for tetracycline-resistance, and cat, which encodes a cytoplasmic chloramphenicol acetyltransferase, respectively. Depletion of RpmJ did not inhibit protein synthesis, whereas the growth of AY101 was defective at high temperatures. The level of SecY mRNA decreased significantly in both disruptants even though the rho-independent terminator was inserted immediately downstream of secY. Some periplasmic proteins were missing in the disruptants with a concomitant increase in the amount of phage shock protein in the inner membrane. These phenotypes caused by the rpmJ null mutation were corrected by a plasmid carrying secY, but not by one carrying rpmJ.  相似文献   

13.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

14.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

15.
TheE. coli secY (prlA) gene, located in the operator-distal part of thespec ribosomal protein operon, codes for an integral membrane protein, SecY. The phenotypes of temperature-sensitive and cold-sensitive mutations insecY suggest that the SecY protein plays an essential rolein vivo to facilitate protein translocation, whereas theprlA mutations in this gene suggest that SecY may interact with the signal sequence of translocating polypeptides. SecY contains most probably six cytoplasmic and five periplasmic domains, as well as 10 transmembrane segments. Such membrane-embedded structure may confer the SecY protein a translocator function, in which it provides a proteinaceous pathway for passage of secreted as well as membrane proteins. Results obtained byin vitro analyses of the translocation reactions, as well as some new phenotypes of thesecY mutants, are consistent with this notion. Possible interaction of SecY with other secretion and chaperone-like factors is also discussed.  相似文献   

16.
G Tian  H C Wu  P H Ray    P C Tai 《Journal of bacteriology》1989,171(4):1987-1997
The requirements for the translocation of prolipoprotein into membrane vesicles were examined in an in vitro system. As measured by the eventual modification and processing of the prolipoprotein to form mature lipoprotein, the overall translocation process was found to require ATP hydrolysis, the presence of some heat-labile soluble cytoplasmic translocation factors, and the function of a cytoplasmic membrane protein, SecY/PrlA. However, the initial step of complete insertion of prolipoprotein into the membrane vesicles occurred without apparent requirements of a nucleotide, cytoplasmic translocation factors, or a functional SecY/PrlA membrane protein. Immunopurified prolipoprotein spontaneously inserted into membrane vesicles at elevated temperatures and required ATP and cytoplasmic translocation factors to form mature lipoprotein. The prolipoprotein inserted most efficiently into liposomes made of negatively charged phospholipids, indicating the importance of phospholipids in protein translocation. These results suggest that ATP hydrolysis and the actions of both cytoplasmic translocation factors and a functional SecY/PrlA membrane protein occur at a step(s) after the insertion of the precursors into membrane vesicles. The initial step of spontaneous insertion of prolipoprotein into membranes is in good agreement with membrane trigger hypothesis proposed by W. Wickner (Annu. Rev. Biochem. 48:23-45, 1979) and the helical hairpin hypothesis proposed by D. M. Engleman and T. A. Steitz (Cell 23:411-422, 1981).  相似文献   

17.
The influenza A virus M2 polypeptide is a small integral membrane protein that does not contain a cleaved signal sequence, but is unusual in that it assumes the membrane orientation of a class I integral membrane protein with an NH2-terminal ectodomain and a COOH-terminal cytoplasmic tail. To determine the domains of M2 involved in specifying membrane orientation, hybrid genes were constructed and expressed in which regions of the M2 protein were linked to portions of the paramyxovirus HN and SH proteins, two class II integral membrane proteins that adopt the opposite orientation in membranes from M2. A hybrid protein (MgMH) consisting of the M2 NH2-terminal and membrane-spanning domains linked precisely to the HN COOH-terminal ectodomain was found in cells in two forms: integrated into membranes in the M2 topology or completely translocated across the endoplasmic reticulum membrane and ultimately secreted from the cell. The finding of a soluble form suggested that in this hybrid protein the anchor function of the M2 signal/anchor domain can be overridden. A second hybrid which contained the M2 NH2 terminus linked to the HN signal anchor and ectodomain (MgHH) was found in both the M2 and the HN orientation, suggesting that the M2 NH2 terminus was capable of reversing the topology of a class II membrane protein. The exchange of the M2 signal/anchor domain with that of SH resulted in a hybrid protein which assumed only the M2 topology. Thus, all these data suggest that the NH2-terminal 24 residues to M2 are important for directing the unusual membrane topology of the M2 protein. These data are discussed in relationship to the loop model for insertion of proteins into membranes and the role of charged residues as a factor in determining orientation.  相似文献   

18.
Consequences of membrane protein overexpression in Escherichia coli   总被引:1,自引:0,他引:1  
Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.  相似文献   

19.
The VirB4 ATPase of Agrobacterium tumefaciens, a putative component of the T-complex transport apparatus, associates with the cytoplasmic membrane independently of other products of the Ti plasmid. VirB4 was resistant to extraction from membranes of wild-type strain A348 or a Ti-plasmidless strain expressing virB4 from an IncP replicon. To evaluate the membrane topology of VirB4, a nested deletion method was used to generate a high frequency of random fusions between virB4 and 'phoA, which encodes a periplasmically active alkaline phosphatase (AP) deleted of its signal sequence. VirB4::PhoA hybrid proteins exhibiting AP activity in Escherichia coli and A. tumefaciens had junction sites that mapped to two regions, between residues 58 and 84 (region 1) and between residues 450 and 514 (region 2). Conversely, VirB4::beta-galactosidase hybrid proteins with junction sites mapping to regions 1 and 2 exhibited low beta-galactosidase activities and hybrid proteins with junction sites elsewhere exhibited high beta-galactosidase activities. Enzymatically active VirB5::PhoA hybrid proteins had junction sites that were distributed throughout the length of the protein. Proteinase K treatment of A. tumefaciens spheroplasts resulted in the disappearance of the 87-kDa VirB4 protein and the concomitant appearance of two immunoreactive species of approximately 35 and approximately 45 kDa. Taken together, our data support a model in which VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains.  相似文献   

20.
It is believed that one or more basic residues at the extreme amino terminus of precursor proteins and the lack of a net positive charge immediately following the signal peptide act as topological determinants that promote the insertion of the signal peptide hydrophobic core into the cytoplasmic membrane of Escherichia coli cells with the correct orientation required to initiate the protein export process. The export efficiency of precursor maltose-binding protein (pre-MBP) was found to decrease progressively as the net charge in the early mature region was increased systematically from 0 to +4. This inhibitory effect could be further exacerbated by reducing the net charge in the signal peptide to below 0. One such MBP species, designated MBP-3/+3 and having a net charge of -3 in the signal peptide and +3 in the early mature region, was totally export defective. Revertants in which MBP-3/+3 export was restored were found to harbor mutations in the prlA (secY) gene, encoding a key component of the E. coli protein export machinery. One such mutation, prlA666, was extensively characterized and shown to be a particularly strong suppressor of a variety of MBP export defects. Export of MBP-3/+3 and other MBP species with charge alterations in the early mature region also was substantially improved in E. coli cells harboring certain other prlA mutations originally selected as extragenic suppressors of signal sequence mutations altering the hydrophobic core of the LamB or MBP signal peptide. In addition, the enzymatic activity of alkaline phosphatase (PhoA) fused to a predicted cytoplasmic domain of an integral membrane protein (UhpT) increased significantly in cells harboring prlA666. These results suggest a role for PrlA/SecY in determining the orientation of signal peptides and possibly other membrane-spanning protein domains in the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号