首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of photosynthetic photon flux density (PPFD) on carboxylationefficiency, estimated as the initial slope (IS) of net CO2 assimilationrate versus intercellular CO2 partial pressure response curve,as well as on ribulose-1, 5-bisphosphate carboxylase (Rubisco)activation was measured in Trifolium subterraneum L. leavesunder field conditions. The relationship between IS and PPFDfits a logarithmic curve. Rubisco activation accounts for theIS increase only up to a PPFD of 550 µmol photons m-2s-1. Further IS increase, between 550 and 1000 µmol photonsm-2 s-1, could be related to a higher ribulose fcwphosphate(RuBP) availability. The slow, but sustained IS increase above1000 µmol photons m-2 s-1 could be explained by the mesophyllCO2 diffusion barriers associated with the high chlorophylland protein content in field developed leaves. Key words: Photosynthesis, initial slope, ribulose-1, 5-bissphosphate carboxylase activation, light response, Trifolium subterraneum L  相似文献   

2.
The effects of phosphate concentration on plant growth and photosyntheticprocesses in primary leaves of young sunflower (Helianthus annuusL.) plants were examined. Plants were grown for 3 weeks on half-strengthHoagland's solution containing 0, 0.1, 0.5, 1.0, and 3.0 molm–3 orthophosphate (Pi). It was shown that optimal photosynthesisand the highest light utilization capacity were achieved at0.5 mol m–3 Pi in the growth medium, which was in goodagreement with the maximum content of organic phosphorus inthe leaves. Low phosphate in the medium inhibited plant growthrate. Phosphate deficiency appreciably decreased photosyntheticoxygen evolution by leaves, the efficiency of photosystem two(PSII) photochemistry and quantum efficiency of PSII electrontransport. High oxidation state of PSII primary electron acceptorQA, at 0.1 mol m–3 Pi, however, indicates that photosyntheticelectron transport through PSII did not limit photosynthesisin Pi-deficient leaves. The results indicate that diminishedphotosynthesis under sub- and supra-optimal Pi was caused mainlyby a reduced efficiency of ribulose 1, 5-bisphosphate (RuBP)regeneration at high light intensities. These results suggestthat, under non-limiting C02 and irradiance, photosynthesisof the first pair of leaves could be diminished by both sub-and supra-optimal phosphorus nutrition of sunflower plants. Key words: Helianthus annuus L, phosphate nutrition, photosynthesis, photochemical efficiency  相似文献   

3.
Sunflower plants were grown under controlled environmental conditionswith either 0 or 10 mol m–3 phosphate (Pi). From steady-statemeasurements of gas exchange and chlorophyll fluorescence madeon intact leaves, the in vivo CO2/O2 specificity factor (invivo Ksp) of ribulose 1,5-Aisphosphate carboxylase-oxygenase(Rubisco) was determined following two methods based on modelsof C3 photosynthesis by Brooks and Farquhar (1985) and Peterson(1989). The two methods gave in vivo Ksp values for controlsunflower leaves which were similar to published values forhigher plants. Extreme Pi deficiency decreased in vivo Ksp,in sunflower leaves compared to adequate Pi. This suggests thatPi deficiency affected photorespiration less than photosynthesis.The decrease in in vivo Ksp may be due to a real change in theenzyme kinetics favouring oxygenation more than carboxylationor due to an increase in the number of CO2 molecules releasedper oxygenation; in which case the observed decrease in thein vivo Ksp determined on intact leaves will not agree numericallywith the true Ksp of Rubisco determined in vitro using purifiedenzyme from the same leaf. We discuss the implications of therelatively large photorespiration in Pi-deficient sunflowerleaves with respect to the increased dissipation of photosyntheticelectrons and photorespiratory recycling of Pi in thechloroplaststroma. Although our results on in vivo Ksp suggested a relativelylarger photorespiratory potential in Pi-deficient than controlsunflower leaves, photosynthesis was insensitive to O2 in Pi-deficientleaves; the possible reasons for this phenomenon are discussed.Under extreme Pi deficiency, O2 sensitivity of photosynthesisis not a reflection of the in vivo photorespiratory rates. Determinationof in vivo Ksp of Rubisco is a useful approach to study thephotorespiratory potential of intact leaves. Key words: Chlorophyll fluorescence, phosphate deficiency, photorespiration, photosynthesis, PSII quantum yield, Rubisco specificity factor  相似文献   

4.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

5.
A comparative study was made of the inhibition of ribulose-1,5-bisphosphatecarboxylase-oxygenase (Rubisco) amongst six cultivars of Glycinemax L. Merr., associated with synthesis of 2-carboxyarabinitol1-phosphate (CA1P) during darkness. Significantly lower meanvalues of dark inhibition of Rubisco were observed in soybeancv. Davis than in cvs Bragg, Cobb, Hardee, Gordon, and Kirby.The CA1P synthesis/degradation cycle during dark/light transitionsremained operational in cv. Bragg plants grown at low irradiance(40 µmol photons m–2 s–1). However, CA1P synthesisand degradation rates were slower in the dark (t0.5 = 240 versus25 min), and light (t0.5 = 20 versus 3.8 min) respectively,as compared to plants grown at higher irradiance (550 µmolphotons m–2 s–1). In addition, the activation stateof Rubisco in low-light-grown plants showed only a small declineafter a transition to darkness. We conclude that (a) cultivar-dependentvariation occurs amongst soybeans with respect to CAlP regulationof Rubisco, and (b) soybeans acclimated to low irradiance maydepend more on CA1P synthesis/degradation to regulate Rubisco,and less on changes in the enzyme activation state. Key words: Activation state, Glycine max, photosynthesis, Rubisco, 2-carboxyarabinitol 1-phosphate  相似文献   

6.
Changes in carbon fixation rate and the levels of photosyntheticproteins were measured in fourth leaves of Lolium temulentumgrown until full expansion at 360 µmol quanta m–2s–1 and subsequently at the same irradiance or shadedto 90 µmol m–2 s–1. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco), light-harvesting chlorophylla/b protein of photosystem II (LHCII), 65 kDa protein of photosystemI (PSI), cytochrome f (Cytf) and coupling factor 1 (CF1) declinedsteadily in amount throughout senescence in unshaded leaves.In shaded leaves, however, the decrease in LHCII and the 65kDa protein was delayed until later in senescence whereas theamount of Cyt f protein decreased rapidly following transferto shade and was lower than that of unshaded leaves at the earlyand middle stages of senescence. Decreases in the Rubisco andCF1 of shaded leaves occurred at slightly reduced rates comparedwith unshaded leaves. These results indicate that chloroplastproteins in fully-expanded leaves are controlled individually,in a direction appropriate to acclimate photosynthesis to agiven irradiance during senescence. (Received August 20, 1992; Accepted January 5, 1993)  相似文献   

7.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

8.
The Cyanobacterium Anabaena variabilis ATCC 29413 grown at lowCO2 concentration under mixotrophic conditions with fructoseshowed a repression in the ability to fix inoganic carbon. Thisrepression was not due to a diminution in the ability to transportexternal inorganic carbon but could be explained by a decreaseof two enzymatic activities involved in the assimilation ofinorganic carbon: carbonic anhydrase and Rubisco. Carbonic anhydraseactivity was close to 50% lower in mixotrophic than in autotrophiccells. Moreover growth under mixotrophic conditions reducedRubisco activity at all dissolved inorganic carbon concentrationsassayed (5–60 mM). Maximum Rubisco activity (Vmax decreasedfrom µmol CO2 mg protein-1h-1 in autotrophic cells to2.3 µmol CO2 mg protein-1h-1 in mixotrophic cells. Nosignificant differences in Km(C1) between autotrophic and mixotrophiccells were however observed. The possible mechanisms involvedin the inhibition of Rubisco are discussed. (Received November 8, 1994; Accepted October 12, 1995)  相似文献   

9.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

10.
Blue light effects on the acclimation of energy partitioningcharacteristics in PSII and CO2 assimilation capacity in spinachto high growth irradiance were investigated. Plants were grownhydroponically in different light treatments that were a combinationof two light qualities and two irradiances, i.e. white lightand blue-deficient light at photosynthetic photon flux densities(PPFDs) of 100 and 500 µmol m–2 s–1. The CO2assimilation rate, the quantum efficiency of PSII (PSII) andthermal dissipation activity / in young, fully expanded leaves were measured under 1,600 µmol m–2 s–1white light. The CO2 assimilation rate and PSII were higher,while / was lower in plants grown under high irradiancethan in plants grown under low irradiance. These responses wereobserved irrespective of the presence or absence of blue lightduring growth. The extent of the increase in the CO2 assimilationrate and PSII and the decrease in / by high growth irradiance was smaller under blue light-deficient conditions. These resultsindicate that blue light helps to boost the acclimation responsesof energy partitioning in PSII and CO2 assimilation to highirradiance. Similarly, leaf N, Cyt f and Chl contents per unitleaf area increased by high growth irradiance, and the extentof the increment in leaf N, Cyt f and Chl was smaller underblue light-deficient conditions. Regression analysis showedthat the differences in energy partitioning in PSII and CO2assimilation between plants grown under high white light andhigh blue-deficient light were closely related to the differencein leaf N.  相似文献   

11.
The rate of net photosynthesis (P) of whole plant stands oftomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativusL.) and sweet pepper (Capsicum annuum L.) was measured in sixlong-term experiments in large greenhouses under normal operatingconditions and CO2-concentrations between 200 and 1200 µmolmol-1. The objective was to quantify the responses to lightand carbon dioxide and to obtain data sets for testing simulationmodels. The method of measuring canopy photosynthesis involvedan accurate estimation of the greenhouse CO2 balance, usingnitrous oxide (N2O) as tracer gas to determine, on-line, theexchange rate between greenhouse and outside air. The estimatedrelative error in the observed P was about ± 10%, exceptthat higher relative errors could occur under particular conditions. A regression equation relating P to the photosynthetically activeradiation, the CO2 concentration and the leaf area index explained83-91% of the variance. The main canopy photosynthesis characteristicscalculated with the fitted regression equations were: canopyPmax 5-9 g m-2 h-1 CO2 uptake; ratio Pmax/LAI 1·5-3 gm-2 h-1; light compensation point 32-86 µmol s-1 m-2;light use efficiency (quantum yield) at low light 0·06-0·10µmol µmol-1 and CO2 compensation point 18-54 µmolmol-1. The results were related to the prevailing conditions.Copyright1994, 1999 Academic Press Canopy photosynthesis, Capsicum annuum L., carbon dioxide, CO2, CO2 balance, CO2 use efficiency, cucumber, Cucumis sativus L., glasshouse, greenhouse, light use efficiency, Lycopersicon esculentum Mill., sweet pepper, tomato, tracer gas  相似文献   

12.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

13.
Algae (mainly Euglena sp.) from a high rate oxidation pond (HROP)were used for studying the afternoon depression in primary productivity.The phenomenon was observed on the same date by laboratory measurementsof photosynthesis and respiration (oxygen evolution method)as well as by in situ determinations of 14C incorporation. Thefollowing values of were calculated: morning, 0.014 µmolO2/mg Chi a/min//mol quanta.m2.s; afternoon, 0.008. Assuminga constant kc of 0.006 m2/mg Chi a we found the quantum requirement(–1) in the morning sample to be considerably lower thanin the afternoon sample (surface: morning 44 mol quanta/molO2; afternoon, 71). Besides this reduction in photosyntheticefficiency the afternoon sample also exhibited reduced lightsaturated photosynthetic rates (Pmax) and enhanced dark respirationrates. The combination of these three effects led to considerablylower areal primary productivity in the HROP in the afternoon.We suggest that this phenomenon is brought about by carbon limitationand cell overloading by photosynthetic products.  相似文献   

14.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

15.
The effects of elevated CO2 were studied on the photosyntheticgas exchange behaviour and leaf physiology of two contrastingpoplar (Populus) hybrids grown and treated in open top chambers(OTCs in Antwerp, Belgium) and in closed glasshouse cabinets(GHCs in Sussex, UK). The CO2 concentrations used in the OTCswere ambient and ambient +350 µmol mol–1 while inthe GHCs they were c. 360 µmol mol–1 versus 719µmol mol–1. Measurements of photosynthetic gas exchangewere made for euramerican and interamerican poplar hybrids incombination with measurements of dark respiration rate and Rubiscoactivity. Significant differences in the leaf anatomy and structure(leaf mass per area and chlorophyll content) were observed betweenthe leaves grown in the OTCs and those grown in the GHCs. ElevatedCO2 stimulated net photosynthesis in the poplar hybrids after1 month in the GHCs and after 4 months in the OTCs, and therewas no evidence of downward acclimation (or down-regulation)of photosynthesis when the plants in the two treatments weremeasured in their growth CO2 concentration. There was also noevidence of down-regulation of Rubisco activity and there wereeven examples of increases in Rubisco activity. Rubisco exerteda strong control over the light-saturated rate of photosynthesis,which was demonstrated by the close agreement between observednet photosynthetic rates and those that were predicted fromRubisco activities and Michaelis-Menten kinetics. After 17 monthsin elevated CO2 in the OTCs there was a significant loss ofRubisco activity for one of the hybrid clones, i.e. Beaupr,but not for clone Robusta. The effect of the CO2 measurementconcentration (i.e. the short-term treatment effect) on netphotosynthesis was always larger than the effect of the growthconcentration in both the OTCs or GHCs (i.e. the longterm growthCO2 effect), with one exception. For the interamerican hybridBeaupr dark respiration rates in the OTCs were not significantlyaffected by the elevated CO2 concentrations. The results suggestthat for rapidly growing tree species, such as poplars, thereis little evidence for downward acclimation of photosynthesiswhen plants are exposed to elevated CO2 for up to 4 months;longer term exposure reveals loss of Rubisco activity. Key words: Elevated CO2, Populus, Rubisco, photosynthesis, chlorophyll content  相似文献   

16.
Reddy, A. R. and Das, V. S. R. 1987. Modulation of sucrose contentby fructose 2,6-bisphosphate during photosynthesis in rice leavesgrowing at different light intensities.—J. exp. Bot. 38:828–833. The relationship between the rate of CO2 fixation and sucroseconcentration in the leaves of rice (Oryza sativa L.) grownat different light intensities was investigated. Maximum sucrosecontent coincided with maximum rates of CO2 fixation, achievedat a photon flux density of 1600 µmol m–2 s–1.The levels of sucrose and fructose 2,6-bisphosphate were alsocompared in the leaves under different light intensities. Fructose2,6-Msphosphate accumulated during growth at low light. Theactivity of fructose-6-phosphate 2-kinase was high in the leavesgrown at low light while that of fructose-2,6-bisphosphatasewas low. The activities of phosphoglucose isomerase and phospho-glucomutasewere slightly increased by growth at low light The activitiesof UDP glucose pyrophosphorylase were adversely affected invitro with increased concentrations of fructose 2,6-bisphosphatewhile those of sucrose phosphate synthase were moderately affected.Phosphoglucose isomerase and phosphoglucomutase were activatedby fructose 2,6-bisphosphate (8-0 mmol m–3) by 12-15%.The results suggested that low light intensities during growthresult in an accumulation of fructose 2,6-bisphosphate whichmodulates the key enzymes of sucrose biosynthesis thus regulatingcarbon flow under conditions of limited photosynthesis. Key words: Oryza sativa, photosynthesis, sucrose synthesis, fructose 2,6-bisphosphate, light  相似文献   

17.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

18.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

19.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

20.
Mass spectrometry has been used to investigate the transportof CO2 in the freshwater diatom Navicula pelliculosa. The timecourseof CO2 formation in the dark after addition of 100 mmol m–3dissolved inorganic carbon (DIC) to cell suspensions showedthat no external carbonic anhydrase (CA) was present in thesecells. Upon illumination, cells pre-incubated at pH 75 with100 mmol m–3 DIC, removed almost all free CO2 from themedium at an initial rate of 285 µmol CO2 mg–1Chl h–1. Equilibrium between HCO3 and CO2 in themedium occurred rapidly upon addition of bovine CA, showingthat CO2 depletion resulted from a selective uptake of CO2 ratherthan an uptake of all inorganic carbon species. However, photosyntheticO2 evolution rate remained constant after CO2 had been depletedfrom the medium indicating that photosynthesis is sustainedprimarily by active HCO3 uptake. Treatment of cells with2-iodoacetamide (83 mol m–3) completely inhibited CO2fixation but had little effect on CO2 transport since initialrates of CO2 depletion were about 81% that of untreated cells.Transfer of iodoacetamide-treated cells to the dark caused arapid increase in the CO2 concentration in the medium largelydue to the efflux of the unfixed intracellular DIC pool whichwas found to be about 194 times the concentration of that inthe external medium. These results indicate that Navicula pelliculosaactively takes up molecular CO2 against a concentration gradientby a process distinct from HCO3 transport. Key words: Dissolved inorganic carbon, carbonic anhydrase, bicarbonate transport, CO2 transport, mass spectrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号