首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Plants respond to environmental stress by activating "stress genes." The plant hormone abscisic acid (ABA) plays an important role in stress-responsive gene expression. Although Ca(2+) serves as a common second messenger in signaling stress and ABA, little is known about the molecular basis of Ca(2+) action in these pathways. Here, we show that CIPK3, a Ser/Thr protein kinase that associates with a calcineurin B-like calcium sensor, regulates ABA response during seed germination and ABA- and stress-induced gene expression in Arabidopsis. The expression of the CIPK3 gene itself is responsive to ABA and stress conditions, including cold, high salt, wounding, and drought. Disruption of CIPK3 altered the expression pattern of a number of stress gene markers in response to ABA, cold, and high salt. However, drought-induced gene expression was not altered in the cipk3 mutant plants, suggesting that CIPK3 regulates select pathways in response to abiotic stress and ABA. These results identify CIPK3 as a molecular link between stress- and ABA-induced calcium signal and gene expression in plant cells. Because the cold signaling pathway is largely independent of endogenous ABA production, CIPK3 represents a cross-talk "node" between the ABA-dependent and ABA-independent pathways in stress responses.  相似文献   

5.
In our previous research, we showed that the cyclin-dependent kinase regulatory subunit (CKS2) in maize (Zea mays L.) was induced by water deficit and cold stress. To elucidate its expression patterns under adversity, we isolated and characterized its promoter (PZmCKS2). A series of PZmCKS2-deletion derivatives, P0–P3, from the translation start code (?1,455, ?999, ?367, and ?3 bp) was fused to the β-glucuronidase (GUS) reporter gene, and each deletion construct was analyzed by Agrobacterium-mediated steady transformation into Arabidopsis. Leaves were then subjected to dehydration, cold, abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA). Sequence analysis showed that several stress-related cis-acting elements (MBS, CE3, TGA element, and ABRE) were located within the promoter. Deletion analysis of the promoter, PZmCKS2, suggested that the ?999 bp promoter region was required for the highest basal expression of GUS, and the ?367 bp sequence was the minimal promoter for ZmCKS2 activation by low temperature, ABA, and MeJA. The cis-acting element ABRE was necessary for promoter activation by exogenous ABA.  相似文献   

6.
The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.

Phosphorylation in the activation loop of the Raf-like kinase ARK is critical for SNF1-related protein kinase2 regulation during abscisic acid responses in the moss Physcomitrium (Physcomitrella) patens.  相似文献   

7.
8.
Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.  相似文献   

9.
郑磊  刘关君  杨传平 《植物研究》2007,27(2):212-217
以3% NaHCO3溶液胁迫处理48 h的西伯利亚蓼为试材,利用RACE技术,从其茎部组织克隆了脱水应答蛋白RD22的全长cDNA序列。测序后的结果分析表明,该cDNA序列全长为1 302 bp,5′非翻译区为59 bp,3′非翻译区为25 bp,开放读码框为1 218 bp,编码405个氨基酸。在氨基酸序列的C端含有一个比较保守的BURP结构域,N端含有5个重复序列THV-VGKGGV-V。信号肽检测证明该蛋白为分泌性蛋白,前21个氨基酸区域为信号肽结构。其推演的氨基酸序列与葡萄的同源性最高,达到60%。该基因已在GenBank上注册,基因序列登录号为DQ836050。  相似文献   

10.
Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic‐like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand‐free kinase domain shows an auto‐inhibited conformation similar to that observed in human Tyr kinases of the Src‐family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. Proteins 2015; 83:982–988. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The full-length cDNA sequence (1158 bp) encoding a ribosomal L5 protein, designated as TaL5, was firstly isolated from common wheat (Triticum aestivum L.) using the rapid amplification of cDNA ends method (RACE). The open reading frame (ORF) of TaL5 gene was 906 bp, and its deduced amino acid sequence (301 residues) shared high similarity to those of other higher plant L5 proteins. TaL5 protein contained a putative 5S binding region (74 amino acids). TaL5 DNA sequence was further cloned, and sequence analysis showed that it contained 7 introns and 8 exons. Predicated using TargetP software, TaL5 protein was putatively located in mitochondria and contains a transit peptide of 12 amino acids. During grain filling period, temporal expression pattern of TaL5 gene was approximately consistent with the rates of starch accumulation in grains. Additionally, TaL5 gene was dramatically induced by salt, drought and freezing stresses, exogenous abscisic acid (ABA) and salicylic acid (SA) in wheat seedlings. These implied that TaL5 gene could function in growth, development and abiotic stresses in wheat plants.  相似文献   

12.
Protein Phosphatase 2C (PP2C) is an important phosphatase-like protein in eukaryotic organisms that can negatively regulate protein kinase cascade abscisic acid (ABA) signal system through phosphorylation and carry out vital roles in various cell processes. The previous study indicated that the accumulation of reactive oxygen species (ROS) is a part of mechanism of glucohexaose-induced resistance in cucumber cotyledons, and CsPP2C80s might play a crucial role in processes related to ROS produce and signal transduction. To identify the mechanism of CsPP2C80s involved in glucohexaose and ABA signaling regulating cell redox status, the effects of glucohexaose and ROS inhibitor pretreatment on endogenous ABA content and ABA signaling genes expression levels of cucumber seedlings were analysed. These results suggest that cucumber CsPP2C80s are involved in ROS accumulation and ABA signal transduction pathway induced by glucohexaose, CsPP2C80s play a positive regulatory role in process of ABA combined with ABA receptors (PYLs) to activate SNF1-related protein kinases 2 (SnRK2s) and regulate NADPH oxidase to produce extracellular hydrogen peroxide (H2O2), providing unequivocal molecular evidence of PP2C-mediated ABA response mechanisms functioning in cell redox status induced by glucohexaose.  相似文献   

13.
Streptomyces coelicolor, the model species for morphologically complex actinomycete bacteria, has unique characteristics such as morphological and physiological differentiation, which are controlled by various factors and several protein kinases. From the whole genomic sequence of S. coelicolor A3(2), 44 putative serine/threonine (Ser/Thr) protein kinases were identified, and the pkaF gene was chosen as the best-conserved protein for typical Ser/Thr protein kinases. pkaF encodes a 667-amino acid protein with a predicted N-terminal Ser/Thr kinase domain and four repeated C-terminal penicillin-binding domains and Ser/Thr kinase-associated (PASTA) domains. Based on PCR, a pkaF gene was cloned and heterologously expressed. PkaF expressed in Escherichia coli had the bigger molecular size than the expected value (75 kDa) and was further purified by Ni2+-NTA agarose affinity column chromatography to homogeneity. The purified PkaF was autophosphorylated through the transfer of the γ-phosphate group of ATP. The extent of phosphorylation was proportional to the amount of PkaF, and the phospho-PkaF was dephosphorylated by the addition of the cell lysate of S. coelicolor A3(2). Although no change was observed in the pkaF disruptant, overexpression of pkaF induced severe repression of morphogenesis and actinorhodin production, but not undecylprodigiosin production, implying that PkaF specifically regulates morphogenesis and actinorhodin production in S. coelicolor.  相似文献   

14.
15.
The phytohormone abscisic acid (ABA), an important bioactive compound in plants, is implicated in several essential processes such as development and the abiotic stress response. Many components have been reported to have roles in these processes. Although 2C-type protein phosphatases (PP2C) and SNF1-related protein kinases2 (SnRK2) family are known to be important signal mediators, the molecular mechanisms by which these components regulate the ABA signaling pathway have not been elucidated. Recent identification of soluble ABA receptors, PYR/PYL/RCAR, has provided a major breakthrough in understanding the signaling mechanisms of ABA and revealed the importance of PP2Cs. In addition, the physical, biochemical and physiological connections between PP2C and SnRK2 have been clearly demonstrated. Taken together, the molecular basis of the major ABA signaling pathway has been established, from perception to gene expression. In this addendum, we discuss this emerging ABA signaling pathway, which has a conventional protein phosphorylation/dephosphorylation regulatory circuit and consider its physiological and functional relevance.Key words: ABA receptor, abscisic acid, PP2C, signal transduction, SnRK2, plant hormone, phosphoarylation  相似文献   

16.
蛋白磷酸化在植物细胞脱落酸(ABA)介导的信号转导中起重要作用。然而,很多参与ABA信号途径的蛋白元件仍不清楚。使用改进的体外激酶试验方法的研究结果表明,在玉米叶片中,ABA和H2O2能够快速活化蛋白激酶总活性和Ca2+依赖型蛋白激酶总活性;ABA诱导的蛋白激酶总活性增加可以被活性氧的抑制剂和清除剂抑制,蛋白激酶抑制剂不仅可以降低ABA和H2O2诱导的激酶活性增加,而且也可以弱化它们对抗氧化防护酶活性的诱导作用;ABA和H2O2引发的蛋白磷酸化作用显著居先于它们诱导的抗氧化防护作用。使用凝胶激酶试验方法进行研究发现,一组分子量分别为66kDa,52kDa,49kDa和35kDa的蛋白激酶可能介导了ABA和H2O2诱导的抗氧化防护反应,并且66kDa和49kDa的蛋白激酶可能在ROS的下游起作用,而52kDa和35kDa的蛋白激酶可能在ABA和ROS的下游起作用。  相似文献   

17.
18.
The role of systemin inPin2 gene expression was analyzed in wild-type plants of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.), as well as in abscisic acid (ABA)-deficient tomato (sitiens) and potato (droopy) plants. The results showed that systemin initiates Pin2 mRNA accumulation only in wildtype tomato and potato plants. As in the situation after mechanical wounding,Pin2 gene expression in ABA-deficient plants was not activated by systemin. Increased endogenous levels of jasmonic acid (JA) and accumulation of Pin2 mRNA were observed following treatment with α-linolenic acid, the precursor of JA biosynthesis, suggesting that these ABA mutants still have the capability to synthesize de novo JA. Measurement of endogenous levels of ABA and JA showed that systemin leads to an increase of both phytohormones (ABA and JA) only in wild-type but not in ABA-deficient plants.  相似文献   

19.
Bacteria usually use two-component systems for signal transduction, while eukaryotic organisms employ Ser/Thr and Tyr kinases and phosphatases for the same purpose. Many prokaryotes turn out to harbor Ser/Thr and Tyr kinases, Ser/Thr and Tyr phosphatases, and their accessory components as well. The sequence determination of the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 offers the possibility to survey the extent of such molecules in a prokaryotic organism. This cyanobacterium possesses seven Ser/Thr kinases, seven Ser/Thr and Tyr phosphatases, one protein kinase interacting protein, one protein kinase regulatory subunit and several WD40-repeat-containing proteins. The majority of the protein phosphatases presented in this study were previously reported as hypothetical proteins. We analyze here the structure and genetic organization of these ORFs in the hope of providing a guidance for their functional analysis. Unlike their eukaryotic counterparts, many of these genes are clustered on the chromosome, and this genetic organization offers the opportunity to study their possible interaction. In several cases, genes of two-component transducers are found within the same cluster as those encoding a Ser/Thr kinase or a Ser/Thr phosphatase; the implication for signal transduction mechanism will be discussed.  相似文献   

20.
LapA RNAs, proteins, and activities increased in response to systemin, methyl jasmonate, abscisic acid (ABA), ethylene, water deficit, and salinity in tomato (Lycopersicon esculentum). Salicylic acid inhibited wound-induced increases of LapA RNAs. Experiments using the ABA-deficient flacca mutant indicated that ABA was essential for wound and systemin induction of LapA, and ABA and systemin acted synergistically to induce LapA gene expression. In contrast, pin2 (proteinase inhibitor 2) was not dependent on exogenous ABA. Whereas both LapA and le4 (L. esculentum dehydrin) were up-regulated by increases in ABA, salinity, and water deficit, only LapA was regulated by octadecanoid pathway signals. Comparison of LapA expression with that of the PR-1 (pathogenesis-related 1) and GluB (basic β-1,3-glucanase) genes indicated that these PR protein genes were modulated by a systemin-independent jasmonic acid-signaling pathway. These studies showed that at least four signaling pathways were utilized during tomato wound and defense responses. Analysis of the expression of a LapA1:GUS gene in transgenic plants indicated that the LapA1 promoter was active during floral and fruit development and was used during vegetative growth only in response to wounding, Pseudomonas syringae pv tomato infection, or wound signals. This comprehensive understanding of the regulation of LapA genes indicated that this regulatory program is distinct from the wound-induced pin2, ABA-responsive le4, and PR protein genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号