首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In Amazonian rain forest trees of Vochysia vismiaefolia (Vochysiaceae), ants were found to induce twig structures that resembled classical ant domatia. This phenomenon is novel for ant‐plants, which commonly develop domatia without the activity of ants. Eight species of ants were recorded inside the domatia of six individual trees, but domatia were most numerous and characteristic when induced and inhabited by an undescribed species of Pseudomyrmex on two trees. To investigate the mechanism of domatium growth, we drilled holes into young twigs: the expansion of the twig diameter surrounding the holes was significantly accelerated, comparable to domatia formation. Domatia induction is discussed as a putative step in the evolution of ant‐plants.  相似文献   

2.
Based on pure culture studies and DNA phylogenetic analyses, black yeasts (Chaetothyriales, Ascomycota) are shown to be widely distributed and important components of numerous plant-ant-fungus networks, independently acquired by several ant lineages in the Old and New World. Data from ITS and LSU nu rDNA demonstrate that a high biodiversity of fungal species is involved. There are two common ant-fungus symbioses involving black yeasts: (1) on the carton walls of ant nests and galleries, and (2) the fungal mats growing within non-pathogenic naturally hollow structures (so-called domatia) provided by myrmecophytic plants as nesting space for ants (ant-plant symbiosis). Most carton- and domatia-inhabiting fungi stem from different phylogenetic lineages within Chaetothyriales, and almost all of the fungi isolated are still undescribed. Despite being closely related, carton and domatia fungi are shown to differ markedly in their morphology and ecology, indicating that they play different roles in these associations. The carton fungi appear to improve the stability of the carton, and several species are commonly observed to co-occur on the same carton. Carton fungi commonly have dark-walled monilioid hyphae, colouring the carton blackish and apparently preventing other fungi from invading the carton. Despite the simultaneous presence of usually several species of fungi, forming complex associations on the carton, little?overlap is observed between carton fungi from different ant species, even those that co-occur in nature, indicating at least some host specificity of fungi. Most fungi present on carton belong to Chaetothyriales, but in a few samples, Capnodiales are also an important component. Carton fungi are difficult to assign to anamorph genera, as most lack conidiation. The domatia fungi are more specific. In domatia, usually only one or two fungal species co-occur, producing a dense layer on living host plant tissue in domatia. They have hyaline or light brown thin-walled hyphae, and are commonly sporulating. In both carton and domatia, the fungal species seem to be specific to each ant-plant symbiosis. Representative examples of carton and domatia ant-fungus symbioses are illustrated. We discuss hypotheses on the ecological significance of the Chaetothyriales associated with ants.  相似文献   

3.
Ants inhabiting ant‐plants can respond to cues of herbivory, such as the presence of herbivores, leaf damage, and plant sap, but experimental attempts to quantify the dynamic nature of biotic defenses have been restricted to a few associations between plants and ants. We studied the relationship between certain features of the ant‐shrub Maieta poeppigii Cogn. (Melastomataceae) and the presence or absence of ant patrolling on the leaf surface in plants occupied by the ant Pheidole minutula Mayr (Hymenoptera: Formicidae). We also carried out field experiments to examine ant behavior following plant damage, and the potential cues that induce ant recruitment. These experiments included clipping of the leaf apex, as well as the presentation of a potential herbivore (live termite worker) and a foliar extract from Maieta on treatment leaves. The presence of ants patrolling the leaves of M. poeppigii is influenced by the number of domatia on the plant. Ant patrolling on the leaves of M. poeppigii was constant throughout a 24 h cycle, but the mean number of patrolling ants decreased from young to mature leaves, and from leaves with domatia to those without domatia. There was an overall increase in the number of ants on experimental leaves following all treatments, compared to control leaves. Visual and chemical cues associated with herbivory are involved in the induction of ant recruitment in the Maieta–Pheidole system. The continuous patrolling behavior of ants, associated with their ability to respond rapidly to foliar damage, may result in the detection and repellence/capture of most insect herbivores before they can inflict significant damage to the leaves.  相似文献   

4.
The origin and timing of the appearance of leaf domatia during the ontogeny of plants are important evolutionary traits driving the maintenance of ant-plant associations. In this study conducted in French Guiana on Hirtella physophora, Maieta guianensis, and Tococa guianensis, we focused on the formation and development of leaf domatia having different morphological origins. We modeled the timing of the onset of these domatia, then compared their morpho-anatomical structure. Although the ontogenetic development of the domatia differed between species, they developed very early in the plant's ontogeny so that we did not note differences in the timing of the onset of these domatia. For H. physophora seedlings, a transitional leaf forms before the appearance of fully developed domatia, whereas in M. guianensis and T. guianensis the domatia forms abruptly without transitional leaves. Moreover, in all cases, the morpho-anatomical structure of the domatia differed considerably from the lamina. All three species had similar morpho-anatomical characteristics for the domatia, indicating a convergence in their structural and functional characteristics. This convergence between taxonomically distant plant species bearing domatia having different morphological origins could be interpreted as a product of the plant's evolution toward the morphology and anatomy most likely to maximize ant recruitment and long-term residence.  相似文献   

5.
The distribution, diversity, and assembly of tropical insects have long intrigued ecologists, and for tropical ants, can be affected by competitive interactions, microhabitat requirements, dispersal, and availability and diversity of nesting sites. Arboreal twig‐nesting ants are limited by the number of hollow twigs available, especially in intensive agricultural systems. Ant diversity and abundance may shift along elevation gradients, but no studies have examined if the proportion of occupied twigs or richness of arboreal twig‐nesting ants vary with elevation. In coffee agroecosystems, there are over 40 species of arboreal twig‐nesting ants. We examined communities of twig‐nesting ants in coffee plants along an elevational gradient to answer the following questions: (1) Do species richness and colony abundance decline with elevation or show a mid‐elevation peak? (2) Does community composition change with elevation? (3) Is elevation an important predictor of change in ant abundance, richness, and relative abundance of common species? We surveyed 42 10 × 10 m plots in 2013 from 450 to1550 m elevation across a coffee landscape in Chiapas, Mexico. We sampled a total of 2211 hollow coffee twigs, 77.1 percent of which were occupied by one of 28 species of ants. Pseudomyrmex simplex was more abundant in lower elevations, whereas Pseudomyrmex ejectus dominated in high elevations. Species richness and the percent of occupied hollow twigs both peaked at mid‐elevations (800–1050 m). In sum, we found that species richness, abundance, and composition of arboreal twig‐nesting ants shift with elevation. These findings may provide important insights for understanding ant communities in coffee agroecosystems.  相似文献   

6.
The outcome of any interspecific interaction is often determined by the ecological context in which the interacting species are embedded. Plant ontogeny may represent an important source of variation in the outcome of ant–plant mutualisms, as the level of investment in ant rewards, in alternative (non‐biotic) defenses, or both, may be modulated by the plant's developmental stage. In addition, the abundance and identities of the ants involved in the interaction may change during ontogeny of the host‐plant. Here, we evaluated if plant ontogeny affects the interaction between ants and a savanna tree species (Caryocar brasiliense) that produces extrafloral nectar. We found fewer ants per branch and fewer species of ants per tree in juvenile than in reproductive trees of medium and large size. In addition, large‐sized reproductive trees were more likely to host more aggressive ants than were medium‐sized reproductive or juvenile trees. Such differences strongly affected the outcome of the interaction between ants and their host‐plants, as the magnitude of the effect of ants on herbivory was much stronger for large trees than for juvenile ones. The fact that we did not find significant ontogenetic variation in the concentration of leaf tannins suggests that the observed differences in herbivory did not result from a differential investment in chemical defenses among different‐sized plants. Overall, the results of our study indicate that the developmental stage of the host plant is an important factor of conditionality in the interaction between C. brasiliense and arboreal foraging ants.  相似文献   

7.
Interactions between potentially mutualistic partners can vary over geographic areas. Myrmecophytes, which are plants harbouring ants, often do not exhibit sufficient intraspecific variability to permit comparative studies of myrmecophytic traits over space or time. Humboldtia brunonis (Fabaceae), a dominant, endemic myrmecophyte of the Indian Western Ghats, is unique in exhibiting considerable variability in myrmecophytic traits, e.g. domatia presence, as well as domatia occupancy and associated ant diversity throughout its geographic range. Although its caulinary domatia are occupied by at least 16 ant species throughout its distribution, young leaves and floral buds producing extrafloral nectar (EFN) are protected by ants from herbivory only in the southernmost region, where Technomyrmex albipes (Dolichoderinae) is the most abundant ant species. The extent of protection by ants was positively related to local species richness of ants and their occupancy of domatia. On the other hand, the highest abundance of interlopers in the domatia, including non‐protective ants, the arboreal earthworm Perionyx pullus, and other invertebrates, occurred in sites with the least protection from herbivory by ants. Whereas domatia morphometry did not vary between sites, domatia occupied by protective ants and invertebrate interlopers were longer and broader than empty ones at all sites. The lowest percentage of empty domatia was found at the southernmost site. There was a progressive decline in ant species richness from that found at the sites, to that feeding on H. brunonis EFN, to that occupying domatia, possibly indicating constraints in the interactions with the plants at various levels. Our study of this dominant myrmecophyte emphasizes the impact of local factors such as the availability of suitable ant partners, domatia occupancy, and the presence of interlopers on the emergence of a protection mutualism between ants and plants. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 538–551.  相似文献   

8.
Ant–plant relationships, with variability in both intimacy and the trophic structure of associations, are described for the Austro-Malesian rainforest tree genus Ryparosa (Achariaceae). The range of associations involves opportunistic interactions between plants and foraging ants, mediated by food bodies, and tighter associations in which ant colonies, tending hemipteran trophobionts, reside permanently in plant structures with different degrees of adaptation to house ants. Our study provides strong baseline data to suggest that Ryparosa could become a new model system for examining the evolutionary radiation of ant-related traits. To define the diversity of ant–plant associations in Ryparosa , we first present a review of ant-plant terminology and an outline of its use in this study. Field studies of ant interactions with food bodies in myrmecotrophic R. kurrangii from Australia and the association between myrmecoxenic R. fasciculata and two Cladomyrma plant-ant species on the Malay Peninsula provide detailed examples of ant–plant interactions. An examination of herbarium material revealed a diverse range of ant–plant associations in other Ryparosa taxa. All 27 species had evidence of food body production, seven species had evidence of stem inhabitation by ants, five species had specialized stem domatia, and the domatia of R. amplifolia featured prostomata. Variation in the specificity of Ryparosa ant–plant interactions is discussed in relation to known ant partners and other ant–plant associations.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 353–371.  相似文献   

9.
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.  相似文献   

10.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

11.
Several Central American species of Piper sect. Macrostachys have obligate associations with ants, in which the ant partner derives food and shelter from modified plant structures and, in turn, protects the plant against fungal infection and herbivory. In addition to these obligate ant-plants (i.e. myrmecophytes), several other species in Piper have resident ants only sometimes (facultative), and still other plant species never have resident ants. Sheathing petioles of sect. Macrostachys form the domatia in which ants nest. Myrmecophytes in sect. Macrostachys have tightly closed petiole sheaths with bases that clasp the stem. These sheathing petioles appear to be the single most important plant character in the association between ants and species of sect. Macrostachys . We examined the structure and variation of petioles in these species, and our results indicate that minor modifications in a small number of petiolar characters make the difference between petioles that are suitable for habitation by ants and those that are not.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 181–191.  相似文献   

12.
Exploring the factors governing the maintenance and breakdown of cooperation between mutualists is an intriguing and enduring problem for evolutionary ecology, and symbioses between ants and plants can provide useful experimental models for such studies. Hundreds of tropical plant species have evolved structures to house and feed ants, and these ant–plant symbioses have long been considered classic examples of mutualism. Here, we report that the primary ant symbiont, Allomerus cf. demerarae, of the most abundant ant-plant found in south-east Peru, Cordia nodosa Lam., castrates its host plant. Allomerus workers protect new leaves and their associated domatia from herbivory, but destroy flowers, reducing fruit production to zero in most host plants. Castrated plants occupied by Allomerus provide more domatia for their associated ants than plants occupied by three species of Azteca ants that do not castrate their hosts. Allomerus colonies in larger plants have higher fecundity. As a consequence, Allomerus appears to benefit from its castration behaviour, to the detriment of C. nodosa. The C. nodosa–ant system exhibits none of the retaliatory or filtering mechanisms shown to stabilize cheating in other cooperative systems, and appears to persist because some of the plants, albeit a small minority, are inhabited by the three species of truly mutualistic Azteca ants.  相似文献   

13.
Evolution of myrmecophytism in western Malesian Macaranga (Euphorbiaceae)   总被引:1,自引:0,他引:1  
Plants inhabited by ants (myrmecophytes) have evolved in a diversity of tropical plant lineages. Macaranga includes approximately 300 paleotropical tree species; in western Malesia there are 26 myrmecophytic species that vary in morphological specializations for ant association. The origin and diversification of myrmecophytism in Macaranga was investigated using phylogenetic analyses of morphological and nuclear ITS DNA characters and studies of character evolution. Despite low ITS variation, the combined analysis resulted in a well-supported hypothesis of relationships. Mapping myrmecophytism on all most parsimonious trees resulting from the combined analysis indicated that the trait evolved independently between two and four times and was lost between one and three times (five changes). This hypothesis was robust when tested against trees constrained to have three or fewer evolutionary transformations, although increased taxon sampling for the ITS analysis is required to confirm this. Mapping morphological traits on the phylogeny indicated that myrmecophytism was not homologous among lineages; each independent origin involved a suite of different specializations for ant-plant association. There was no evidence that myrmecophytic traits underwent sequential change through evolution; self-hollowing domatia evolved independently from ant-excavated domatia, and different food-body production types evolved in different lineages. The multiple origins of myrmecophytism in Macaranga were restricted to one small, exclusively western Malesian lineage of an otherwise large and nonmyrmecophytic genus. Although the evolution of aggregated food-body production and the formation of domatia coincided with the evolution of myrmecophytism in all cases, several morphological, ecological, and biogeographic factors appear to have facilitated and constrained this radiation of ant-plants.  相似文献   

14.
Arboreal ant mosaics have been intensively investigated, but what generates these mosaics remains poorly understood. In this paper, we hypothesize that the dynamics of arboreal ant mosaics could be better understood by examining the ontogenetic succession of ants in tropical trees. We used three African pioneer tree species as biological models. Lophira alata (Ochnaceae) is a long-lived species that does not furnish any reward (i.e., extra-floral nectaries [EFNs], shelter) to ants, Anthocleista vogelii (Gentianaceae) bears extremely well-developed EFNs, and Barteria fistulosa (Passifloraceae) is a long-lived myrmecophyte providing both EFNs and domatia. For both L. alata and A. vogelii, we noted a succession of different associated ants as the plants grew and aged. Ground-nesting, arboreal-foraging ant species were the first associates, followed by arboreal species that build nests with the leaves of their host trees, together with some species nesting opportunistically in pre-existing cavities. Carton-building Crematogaster species were the last in this succession. The presence of EFNs on A. vogelii slows species turnover, demonstrating that the plant exerts some control over its ant associates. The comparison with B. fistulosa, which generally remains associated with the same plant-ant species during its entire ontogeny, highlights the importance of the selective attractiveness of the trees for their associated ants – or, perhaps, the existence of plant filters that screen arriving ants.  相似文献   

15.
The fitness advantage provided by caulinary domatia to myrmecophytes has never been directly demonstrated because most myrmecophytic species do not present any individual variation in the presence of domatia and the removal of domatia from entire plants is a destructive process. The semi-myrmecophytic tree, Humboldtia brunonis (Fabaceae: Caesalpinioideae), is an ideal species to investigate the selective advantage conferred by domatia because within the same population, some plants are devoid of domatia while others bear them. Several ant species patrol the plant for extra-floral nectar. Fruit production was found to be enhanced in domatia-bearing trees compared to trees devoid of domatia independent of the ant associate. However, this domatium effect was most conspicuous for trees associated with the populous and nomadic ant, Technomyrmex albipes. This species is a frequent associate of H. brunonis, inhabiting its domatia or building carton nests on it. Ant exclusion experiments revealed that T. albipes was the only ant to provide efficient anti-herbivore protection to the leaves of its host tree. Measures of ant activity as well as experiments using caterpillars revealed that the higher efficiency of T. albipes was due to its greater patrolling density and consequent shorter lag time in attacking the larvae. T. albipes also provided efficient anti-herbivore protection to flowers since fruit initiation was greater on ant-patrolled inflorescences than on those from which ants were excluded. We therefore demonstrated that caulinary domatia provide a selective advantage to their host-plant and that biotic defence is potentially the main fitness benefit mediated by domatia. However, it is not the sole advantage. The general positive effect of domatia on fruit set in this ant–plant could reflect other benefits conferred by domatia-inhabitants, which are not restricted to ants in this myrmecophyte, but comprise a large diversity of other invertebrates. Our results indicate that mutualisms enhance the evolution of myrmecophytism.  相似文献   

16.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   

17.
Plant‐based defence mutualisms utilize plant morphology to reduce the performance of plant parasites through their natural enemies. Leaf domatia primarily occur in the axials of secondary veins and are often inhabited by microbivorous and predaceous mites which often increase plant growth rates and reproductive success by controlling plant pests. Our study investigated if domatia investment is limited by plant primary productivity. To our knowledge no studies have tested if foliar domatia are resource‐limited. We tested our hypothesis using the genus Coprosma (Rubiaceae), conducting correlative field surveys and manipulative experiments measuring domatia production in new leaves along temperature, nutrient and irradiance gradients. Field surveys indicated a strong positive association between leaf area, the number of secondary veins, and domatia per leaf. The number of potential sites for domatia is underutilised, with leaves on selected Coprosma species having on average 47 to 72% of the ‘maximum’ number of available sites where domatia could occur. Foliar carbon was positively associated with domatia investment. Coprosma plants held under elevated night‐time temperatures showed a 34–91% decrease in daily carbon gain, a 38% decrease in domatia per leaf mass, and a positive relationship between domatia investment and integrated daily carbon gain. Under irradiance and nutrient stress, our data indicated evidence of a positive relationship between domatia investment and foliar carbon. We found a significant negative association between relative investment in domatia produced and investment in new leaf biomass. Our findings suggest investment in foliar domatia is limited by primary productivity. We propose that domatia are discretionary goods and not intrinsic structures produced automatically on leaves that mites utilize. We suggest that plants have the ability to regulate domatia formation during leaf ontogeny, with investment controlled by resource availability and some intrinsic allocation mechanism to defence.  相似文献   

18.
Summary The hypothesis that ants (Pheidole minutula) associated with the myrmecophytic melastome Maieta guianensis defend their host-plant against herbivores was investigated in a site near Manaus, Amazonas, Brazil. M. guianensis is a small shrub that produces leaf pouches as ant domatia. Plants whose ants were experimentally removed suffered a significant increase in leaf damage compared with control plants (ants maintained). Ants patrol the young and mature leaves of Maieta with the same intensity, presumably since leaves of both ages are equally susceptible to herbivore attack. The elimination of the associated ant colony, and consequent increase in herbivory, resulted in reduced plant fitness. Fruit production was 45 times greater in plants with ants than in plants without ants 1 year after ant removal.  相似文献   

19.
Myrmecophytes (ant–plants) have special hollow structures (domatia) in which obligate ant partners nest. As the ants live only on the plants and feed exclusively on plant food bodies, sap-sucking homopterans in the domatia, and/or the homopterans honeydew, they are suitable for the study of colony size regulation by food. We examined factors regulating ant colony size in four myrmecophytic Macaranga species, which have strictly species-specific association with Crematogaster symbiont ants. Intra- and interspecific comparison of the plants showed that the ant biomass per unit food biomass was constant irrespective of plant developmental stage and plant species, suggesting that the ant colony size is limited by food supply. The primary food offered by the plants to the ants was different among Macaranga species. Ants in Macaranga beccariana and Macaranga bancana relied on homopterans rather than food bodies, and appeared to regulate the homopteran biomass and, as a consequence, regulate the ants own biomass. In contrast, ants in Macaranga winkleri and Macaranga trachyphylla relied primarily on food bodies rather than homopterans, and the plants appeared to manipulate the ant colony size. Per capita plant investment in ants (ant dry weight plant dry weight–1) was different among the four Macaranga species. The homoptera-dependent M. beccariana and M. bancana harbored lower biomass of ants than the food-body dependent M. winkleri, suggesting that energy loss is involved in the homoptera-interposing symbiotic system which has one additional trophic level. The plants investment ratio to the ants generally decreased as plants grew. The evolution of the plant reward-offering system in ant–plant–homopteran symbioses is discussed with an emphasis on the role of homopterans.  相似文献   

20.

Background and Aims

Plant defence traits against herbivores incur production costs that are usually difficult to measure. However, estimating these costs is a prerequisite for characterizing the plant defence strategy as a whole. Myrmecophytes are plants that provide symbiotic ants with specialized nesting cavities, called domatia, in exchange for protection against herbivores. In the particular case of stem domatia, production of extra wood seems to be the only associated cost, making this indirect defence trait a particularly suitable model for estimating the cost of defence.

Methods

Measurements were made of growth pattern and cumulative production cost of domatia over secondary growth in the myrmecophyte Leonardoxa africana subsp. africana, whose internodes display both a solid basal segment and a hollow distal part (the domatium), thus allowing paired comparison of investment in wood.

Key Results

Previous studies showed that ‘overconstruction’ of the hollow part of internodes during primary growth is needed for mechanical support. In this study, it is shown that the relationship between the woody cross-sectional area of the solid and hollow parts of internodes is negatively allometric at the beginning of secondary growth and nearly isometric later on. Thus, in hollow stems, the first phase of slow secondary growth compensates for the ‘overconstruction’ of the ring of wood during primary growth. Moreover, the cumulative production cost of a domatium (estimated as the additional volume of wood required for a hollow stem compared with a solid one) is very high at the beginning of secondary growth and then quickly tends to zero.

Conclusions

Making domatia incurs high costs early in ontogeny, costs that are then amortized later in development of stems and of individual plants. Characterizing ontogenetic variation of the net cost of this peculiar defence mechanism will help us build more accurate theoretical models of resource allocation in myrmecophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号