首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serine 335 at the active site of D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO) is not conserved in other DAAO sequences. To assess its role in catalysis, it was mutated to Gly, the residue present in mammalian DAAO, an enzyme with a 35-fold lower turnover number with D-alanine. The spectral and ligand binding properties of the S335G mutant are similar to those of wild-type enzyme, suggesting an active site with minimally altered electrostatic properties. The S335G mutant is catalytically active, excluding an essential role of S335 in catalysis. However, S335-OH contributes to the high efficiency of the mutant enzyme since the catalytic activity of the latter is lower due to a decreased rate of flavin reduction relative to wild-type RgDAAO. Catalytic rates are pH-dependent and appear to converge to very low, but finite and similar values at low pH for both wild-type and S335G RgDAAO. While this dependence exhibits two apparent pKs with wild-type RgDAAO, with the S335G mutant a single, apparent pK approximately 8 is observed, which is attributed to the ionization of the alphaNH2 group of the bound substrate. Removal of S335-OH thus suppresses an apparent pK approximately 6. Both wild-type RgDAAO and the S335G mutant exhibit a substantial deuterium solvent kinetic isotope effect (> or =4) at pH<7 that disappears with increasing pH and reflects a pKapp=6.9 +/- 0.4. Interestingly, the substitution suppresses the activity towards d-lactate, suggesting a role of the serine 335 in removal of the substrate alpha-OH hydrogen.  相似文献   

2.
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.  相似文献   

3.
Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.  相似文献   

4.
Trigonelline, i.e., N-methylnicotinate, which has a zwitterionic structure similar to a substrate D-amino acid, is a useful active site probe for D-amino acid oxidase (DAO). The affinity of trigonelline for DAO in the deprotonated state at the enzyme bound FAD 3-imino group is higher than in the neutral state, contrary to in the case of benzoate, which is a competitive inhibitor and is in a monoanionic form. The time course of the absorbance change was monitored for the binding of DAO with trigonelline by means of a stopped-flow technique. The reaction, on monitoring at 507 nm, was found to be biphasic at pH 8.3, with fast and slow phases. The dissociation of the 3-imino proton of the enzyme bound FAD was observed in the same time course as the slow phase. These results suggest that the positive charge of trigonelline exists near the 3-imino group of the enzyme bound FAD and interacts repulsively with the proton of the 3-imino group. The absorption spectra of the DAO-trigonelline complex at various pHs also support this hypothesis. In the catalysis of DAO, a similar mechanism may be involved, that is, the positive charge of a D-amino acid may interact repulsively with the 3-imino proton of the enzyme bound FAD, and this interaction may be important for the catalysis.  相似文献   

5.
The high resolution crystal structure of D-amino-acid oxidase (DAAO) from the yeast Rhodotorula gracilis provided us with the tool to engineer the substrate specificity of this flavo-oxidase. DAAO catalyzes the oxidative deamination of D-amino acids, with the exception of D-aspartate and D-glutamate (which are oxidized by D-aspartate oxidase, DASPO). Following sequence homology, molecular modeling, and simulated annealing docking analyses, the active site residue Met-213 was mutated to arginine. The mutant enzyme showed properties close to those of DASPO (e.g. the oxidation of D-aspartate and the binding of l-tartrate), and it was still active on D-alanine. The presence of an additional guanidinium group in the active site of the DAAO mutant allowed the binding (and thus the oxidation) of D-aspartate, but it was also responsible for a lower catalytic activity on D-alanine. Similar results were also obtained when two additional arginines were simultaneously introduced in the active site of DAAO (M213R/Y238R mutant, yielding an architecture of the active site more similar to that obtained for the DASPO model), but the double mutant showed very low stability in solution. The decrease in maximal activity observed with these DAAO mutants could be due to alterations in the precise orbital alignment required for efficient catalysis, although even the change in the redox properties (more evident in the DAAO-benzoate complex) could play a role. The rational design approach was successful in producing an enzymatic activity with a new, broader substrate specificity, and this approach could also be used to develop DAAO variants suitable for use in biotechnological applications.  相似文献   

6.
D-氨基酸氧化酶(D-amino acid oxidase:oxidoreductase, DAAO, EC 1.4.3.3)是一种以黄素腺嘌呤(FAD)为辅基的典型黄素蛋白酶类,可氧化D-氨基酸的氨基生成相应的酮酸和氨。在体内D-氨基酸的代谢中起着重要作用。主要介绍了D-氨基酸氧化酶的生理功能和应用、表达条件优化及通过定点突变对酶学性质的研究。  相似文献   

7.
Y238, one of the very few conserved residues in the active site of d-amino acid oxidases (DAAO), was mutated to phenylalanine and serine in the enzyme from the yeast Rhodotorula gracilis. The mutated proteins are catalytically competent thus eliminating Tyr238 as an active-site acid/base catalyst. Y238F and Y238S mutants exhibit a threefold slower turnover on d-alanine as substrate, which can be attributed to a slower rate of product release relative to the wild-type enzyme (a change of the rate constants for substrate binding was also evident). The Y238 DAAO mutants have spectral properties similar to those of the wild-type enzyme but the degree of stabilization of the flavin semiquinone and the redox properties in the free form of Y238S are different. The binding of the carboxylic acid competitive inhibitors and the substrate d-alanine are changed only slightly, suggesting that the overall substrate binding pocket remains intact. In agreement with data from the pH dependence of ligand binding and with the protein crystal structure, site-directed mutagenesis results emphasize the importance of residue Y238 in controlling access to the active site instead of a role in the substrate/ligand interaction.  相似文献   

8.
The exchange of bound FAD for free FAD was studied with D-amino acid oxidase (D-amino acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3) and beta-D-glucose oxidase (beta-D-glucose:oxygen 1-oxidoreductase, EC 1.1.3.4). For a simple measurement of the reaction rate, equimolar amounts of the enzyme and [14C]FAD were mixed. The exchange occurred very rapidly in the holoenzyme of D-amino acid oxidase at 25 degrees C, pH 8.3 (half life of the exchange: 0.8 min), but slowly in the presence of the substrate or a competitive inhibitor, benzoate. It also occurred slowly in the purple complex of D-amino acid oxidase. In the case of beta-D-glucose oxidase, however, the exchange occurred very slowly at 25 degrees C, pH 5.6, regardless of the presence of the substrate or p-chloromercuribenzoate. On the basis of these findings, the turnover of the coenzymes of flavin enzymes in mammals is discussed.  相似文献   

9.
According to the three-dimensional structure of a porcine kidney D-amino acid oxidase-substrate (D-leucine) complex model, the G313 backbone carbonyl recognizes the substrate amino group by hydrogen bonding and the side-chain hydroxyl of T317 forms a hydrogen bond with C(2)=O of the flavin moiety of FAD [Miura et al. (1997) J. Biochem. 122, 825-833]. We have designed and expressed the G313A and T317A mutants and compared their enzymatic and spectroscopic properties with those of the wild type. The G313A mutant shows decreased activities to various D-amino acids, but the pattern of substrate specificity is different from that of the wild type. The results imply that the hydrogen bond between the G313 backbone carbonyl and the substrate amino group plays important roles in substrate recognition and in defining the substrate specificity of D-amino acid oxidase. The T317A mutant shows a decreased affinity for FAD. The steady-state kinetic measurements indicate diminished activities of T317A to substrate D-amino acids. The transient kinetic parameters measured by stopped-flow spectroscopy revealed that T317 plays key roles in stabilizing the purple intermediate, a requisite intermediate in the oxidative half-reaction, and in enhancing the release of the product from the active site, thereby optimizing the overall catalytic process of D-amino acid oxidase.  相似文献   

10.
D-Amino acid oxidase (DAAO; EC1.4.3.3) has been proposed to play a main role in the degradation of D-serine, an allosteric activator of the N-methyl-D-aspartate-type glutamate receptor in the human brain, and to be associated with the onset of schizophrenia. To prevent excessive D-serine degradation, novel drugs for schizophrenia treatment based on DAAO inhibition were designed and tested on rats. However, the properties of rat DAAO are unknown and various in vivo trials have demonstrated the effects of DAAO inhibitors on d-serine concentration in rats. In the present study, rat DAAO was efficiently expressed in Escherichia coli. The recombinant enzyme was purified as an active, 40 kDa monomeric flavoenzyme showing the basic properties of the dehydrogenase-oxidase class of flavoproteins. Rat DAAO differs significantly from the human counterpart because: (a) it possesses a different substrate specificity; (b) it shows a lower kinetic efficiency, mainly as a result of a low substrate affinity; (c) it differs in affinity for the binding of classical inhibitors; (d) it is a stable monomer in the absence of an active site ligand; and (e) it interacts with the mammalian protein modulator pLG72 yielding a ~100 kDa complex in addition to the ~200 kDa one, as formed by the human DAAO. Furthermore, the concentration of endogenous D-serine in U87 glioblastoma cells was not affected by transfection with rat DAAO, whereas it was significantly decreased when expressing the human homologue. These results raise doubt on the use of the rat as a model system for testing new drugs against schizophrenia and indicate a different physiological function of DAAO in rodents and humans.  相似文献   

11.
1. The holoenzyme of D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3] was found to combine with 1-anilinonaphthalene-8-sulfonate without liberation of its coenzyme, FAD. No energy transfer interaction was found to occur between the bound dye and FAD of the holoenzyme. On the other hand, when the apoenzyme was bound to the dye and then to FAD, energy transfer interaction between the bound dye and bound FAD was observed. In both cases, the dye competes with the substrate, D-alanine. It is concluded that the dye bound to the holoenzyme is oriented in such a special manner that the mutual orientation factor between the dye and FAD becomes very small in magnitude. 2. When the apoenzyme combined with the dye, the monomer-dimer equilibrium of the apoenzyme shifted towards the dimer. On the other hand, 4-monobenzoylamido-4'-aminostilbene-2,2'-disulfonate combined with the apoenzyme to induce monomerization.  相似文献   

12.
The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site.  相似文献   

13.
Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.  相似文献   

14.
1. Progesterone inhibited D-amino acid oxidase (D-amino acid : O2 oxidoreductase (deaminating), EC 1.4.3.3) in competition with its substrate, D-alanine. Binding of progesterone brought about the increase in both fluorescence intensity and fluorescence polarization of FAD, which indicates that the environment surrounding FAD chromophore is modified due to a conformational change in the apoenzyme. 2. Ethinyl estradiol, testosterone, testosterone propionate, corticosterone and aldosterone also inhibited the enzyme slightly in the same manner. Their binding also produced a slight increase in FAD fluorescence without decreasing the fluorescence polarization. 3. Cholesterol did not inhibit the enzyme, though it increased the fluorescence polarization of FAD. This indicates the binding of cholesterol with the enzyme at a site other than the substrate binding site.  相似文献   

15.
Summary A novel method of enzyme immobilization using a tri-functional aziridine to immobilize enzymes was used to immobilize D-amino acid oxidase (DAAO) with good retention of enzymatic activity (62%–89%). The stability of the immobilized DAAO in a fixed bed reactor with continuous operation using D-phenylalanine as substrate yielded a projected half-life of 69 days which is far superior to other methods of immobilization of DAAO.  相似文献   

16.
The flavoenzyme d-amino acid oxidase (DAAO) from Rhodotorula gracilis is a peroxisomal enzyme and a prototypical member of the glutathione reductase family of flavoproteins. DAAO is a stable homodimer with a FAD molecule tightly bound to each 40-kDa subunit. In this work, the urea-induced unfolding of dimeric DAAO was compared with that of a monomeric form of the same protein, a deleted dimerization loop mutant. By using circular dichroism spectroscopy, protein and flavin fluorescence, 1,8-anilinonaphtalene sulfonic acid binding and activity assays, we demonstrated that the urea-induced unfolding of DAAO is a three-state process, yielding an intermediate, and that this process is reversible. The intermediate species lacks the catalytic activity and the characteristic tertiary structure of native DAAO but has significant secondary structure and retains flavin binding. Unfolding of DAAO proceeds through formation of an expanded, partially unfolded inactive intermediate, characterized by low solubility, by increased exposure of hydrophobic surfaces, and by increased sensitivity to trypsin of the beta-strand F5 belonging to the FAD binding domain. The oligomeric state does not modify the inferred folding process. The strand F5 is in contact with the C-terminal alpha-helix containing the Ser-Lys-Leu sequence corresponding to the type 1 peroxisomal targeting signal, and this structural element interacts with the N-terminal betaalphabeta flavin binding motif (Rossmann fold). The expanded conformation of the folding intermediate (and in particular the higher disorder of the mentioned secondary structure elements) could match the structure of the inactive holoenzyme required for in vivo trafficking of DAAO through the peroxisomal membrane.  相似文献   

17.
d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC50. Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds.  相似文献   

18.
Selectable markers enable transgenic plants or cells to be identified after transformation. They can be divided into positive and negative markers conferring a selective advantage or disadvantage, respectively. We present a marker gene, dao1, encoding D-amino acid oxidase (DAAO, EC 1.4.3.3) that can be used for either positive or negative selection, depending on the substrate. DAAO catalyzes the oxidative deamination of a range of D-amino acids. Selection is based on differences in the toxicity of different D-amino acids and their metabolites to plants. Thus, D-alanine and D-serine are toxic to plants, but are metabolized by DAAO into nontoxic products, whereas D-isoleucine and D-valine have low toxicity, but are metabolized by DAAO into the toxic keto acids 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive and negative selection is possible with the same marker gene. The marker has been successfully established in Arabidopsis thaliana, and proven to be versatile, rapidly yielding unambiguous results, and allowing selection immediately after germination.  相似文献   

19.
Evidence is accumulating that oxygen access in proteins is guided and controlled. We also have recently described channels that might allow access of oxygen to pockets at the active site of the flavoprotein D-amino acid oxidase (DAAO) that have a high affinity for dioxygen and are in close proximity to the flavin. With the goal of enhancing the reactivity of DAAO with oxygen, we have performed site-saturation mutagenesis at three positions that flank the putative oxygen channels and high-affinity sites. The most interesting variants at positions 50, 201 and 225 were identified by a screening procedure at low oxygen concentration. The biochemical properties of these variants have been studied and compared with those of wild-type DAAO, with emphasis on the reactivity of the reduced enzyme species with dioxygen. The substitutions at positions 50 and 225 do not enhance this reaction, but mainly affect the protein conformation and stability. However, the T201L variant shows an up to a threefold increase in the rate constant for reaction of O(2) with reduced flavin, together with a fivefold decrease in the K(m) for dioxygen. This effect was not observed when a valine is located at position 201, and is thus attributed to a specific alteration in the micro-environment of one high-affinity site for dioxygen (site B) close to the flavin that plays an important role in the storage of oxygen. The increase in O(2) reactivity observed for T201L DAAO is of great interest for designing new flavoenzymes for biotechnological applications.  相似文献   

20.
Summary The amino acid sequence of D-amino acid oxidase from Rhodotorula gracilis was determined by automated Edman degradation of peptides generated by enzymatic and chemical cleavage. The enzyme monomer contains 368 amino acid residues and its sequence is homologous to that of other known D-amino acid oxidases. Six highly conserved regions appear to have a specific role in binding of coenzyme FAD, in active site topology and in peroxisomal targeting. Moreover, Rhodotorula gracilis D-amino acid oxidase contains a region with a cluster of basic amino acids, probably exposed to solvent, which is absent in other D-amino acid oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号