首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

2.
We investigated the population genetics and fine-scale genetic structure of Rhizopogon roseolus. A total of 173 R. roseolus sporocarps were collected from two stands in the Tottori sand dune. We developed and applied five novel polymorphic microsatellite (SSR; simple sequence repeat) markers for sporocarp genotyping. In total, we identified 110 genets, most of which were small in size. Spatial autocorrelation analyses revealed a significantly positive genetic structure in short-distance classes. The inbreeding coefficient value was significant in both stands (FIS = 0.18), while the FST value (FST = 0.020) indicated little genetic differentiation between the two populations. The majority of alleles were distributed in both stands with similar frequencies. These results suggest that short-distance spore dispersal plays a dominant role in generating new genets, and eventually increases the frequency of inbreeding in the Tottori sand dune, whereas rare gene flow between the two stands, possibly associated with spore dispersal by mycophagous animals, could reduce genetic differentiation.  相似文献   

3.
Analyses of genetic variability and allelic composition in a species exhibiting reproductive fidelity to natal sites may provide important ecological indication of temporal population dynamics, facilitating understanding responses to past disturbances and future climate change. The walleye is an ecologically and economically valuable species, whose largest fishery centers in Lake Erie of the Laurentian Great Lakes; it exhibits reproductive site fidelity, despite otherwise wide-ranging dispersal. We tested whether genetic composition and diversity have remained temporally stable in Lake Erie’s Maumee River, which is the largest and most highly fished spawning run. This population has experienced over a century of exploitation, habitat alterations, and pollution, which may have affected genetic structure and might influence future sustainability. Fourteen nuclear DNA microsatellite loci were analyzed from 744 spawning run walleye to test genetic patterns across: (1) years (N = 12, spanning 1995–2013), (2) birth year cohorts, (3) the sexes, (4) those reproducing earlier (ages 2–6) versus later (7 or older) in life, and (5) the adults versus larvae. Results indicated stability in genetic diversity levels (mean H O = 0.76 ± 0.03) and allelic composition across years (F ST = 0.000–0.006, NS), cohorts (F ST = 0.000–0.013, NS), sexes (F ST = 0.000, NS), earlier versus later reproduction (F ST = 0.000, NS), and between the larvae and adults (F ST = 0.000–0.004, NS). Number of breeders and effective population size were substantial and consistent. This reproductive population thus has maintained genetic stability and high diversity, despite intensive anthropogenic pressures.  相似文献   

4.
Studies linking genetic structure in amphibian species with ecological characteristics have focused on large differences in dispersal capabilities. Here, we test whether two species with similar dispersal potential but subtle differences in other ecological characteristics also exhibit strong differences in genetic structure in the same landscape. We examined eight microsatellites in marbled salamanders (Ambystoma opacum) from 29 seasonal ponds and spotted salamanders (Ambystoma maculatum) from 19 seasonal ponds in a single geographic region in west-central Massachusetts. Despite overall similarity in ecological characteristics of spotted and marbled salamanders, we observed clear differences in the genetic structure of these two species. For marbled salamanders, we observed strong overall genetic differentiation (F ST = 0.091, F′ ST = 0.375), three population-level clusters of populations (K = 3), a strong pattern of isolation by distance (r = 0.58), and marked variation in family-level structure (from 1 to 23 full-sibling families per site). For spotted salamanders, overall genetic differentiation was weaker (F ST = 0.025, F′ ST = 0.102), there was no evidence of population-level clustering (K = 1), the pattern of isolation by distance (r = 0.17) was much weaker compared to marbled salamanders, and there was less variation in family-level structure (from 10 to 36 full-sibling families per site). We suspect that a combination of breeding site fidelity, effective population size, and generation interval is responsible for these marked differences. Our results suggest that marbled salamanders, compared to spotted salamanders, are more sensitive to fragmentation from various land-use activities and would be less likely to recolonize extirpated sites on an ecologically and conservation-relevant time frame.  相似文献   

5.
The spotted sea bass, Lateolabrax maculatus, is popular in recreational fishing and aquaculture in Korea. Its natural population has declined during the past two decades; thus, beginning in the early 2000s stock-enhancement programs were introduced throughout western and southern coastal areas. In this study, genetic similarities and differences between wild and hatchery populations were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 96 alleles were identified. Although many unique alleles were lost in the hatchery samples, no significant reductions were found in heterozygosity or allelic diversity in the hatchery compared to the wild population. High genetic diversity (He = 0.724–0.761 and Ho = 0.723–0.743), low inbreeding coefficient (F IS = 0.003–0.024) and Hardy–Weinberg equilibrium were observed in both wild and hatchery populations. However, the genetic heterogeneity between the populations was significant. Therefore, genetic drift likely promoted inter-population differentiation, and rapid loss of genetic diversity remains possible. Regarding conservation, genetic variation should be monitored and inbreeding controlled in a commercial breeding program.  相似文献   

6.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

7.
The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N A) = 12, allelic richness (A R) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N A = 13.86, A R = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F ST = 0.008, P < 0.01). Pairwise F ST, a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.  相似文献   

8.
Tricyrtis ishiiana is a relic endemic plant taxon of the Convallariaceae that inhabits two nearby gorges in Kanagawa Prefecture, Japan. The distribution range and number of populations are thought to have been reduced to the present refugial populations during the Quaternary climatic oscillations. Because of its showy flowers, this plant has faced illegal removal from its natural habitats for horticultural use and has been designated a critically endangered species (class IA). In this study, we analyzed the genetic structure of the relict populations of T. ishiiana in order to contribute to the conservation strategies of the prefectural government. Our analyses of nine nuclear microsatellite loci detected high genetic diversity (H E = 0.704 and H O = 0.541) for the two populations. The two populations were slightly differentiated (R ST = 0.032), accompanied by faint substructure across the populations (K = 3). In addition, each population exhibited spatial genetic structuring. The relatively low inbreeding coefficient for both populations together (F IS = 0.233) and each population separately (F IS = 0.217?C0.246) may be attributable to crossing among descendants within a population along with occasional gene flow between the populations. These results suggested that the extant populations have not experienced a severe bottleneck. The two extant populations were genetically differentiated at a very low level, accompanied by occasional pollen flow via pollinators and/or seed dispersal by gravity in the mountainous environment. Occasional gene exchange between the populations has allowed T. ishiiana to harbor high genetic diversity despite being a relic plant confined to two small refugial populations.  相似文献   

9.
The Sinai primrose (Primula boveana) is one of the most endangered plant species worldwide, with less than 200 wild individuals surviving in the Sinai mountains of Egypt. There has been a decline in both the number and size of its populations in recent times, possibly caused by threats that include habitat aridification and the impact of human activities. Studying the standing genetic variation and extent of inbreeding of P. boveana is necessary for the design of appropriate conservation strategies for this species. In the present work, we used a set of seven, recently developed, polymorphic microsatellite markers to characterize the genetic variation and levels of inbreeding of the extant populations of P. boveana. We found low levels of genetic variation (H T = 0.470), high differentiation between populations (F ST = 0.737, R ST = 0.935), and very elevated levels of inbreeding (F = 0.862) due to recurrent selfing. These results may be the reflection of low levels of genetic variation and high levels of inbreeding over a long evolutionary period, suggesting that the current genetic pool of the species may enable P. boveana to persist in a habitat where water availability and pollinator services are restricted. Nevertheless, in sight of its rapidly dwindling abundance, it seems prudent to adopt swift measures, including habitat restoration and ex-situ conservation, to prevent the impending extinction of this emblematic species.  相似文献   

10.
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as ‘endangered’ under the Environment Protection and Biodiversity Conservation Act 1999, and ‘vulnerable’ under the International Union for Conservation of Nature’s Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy–Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST  = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.  相似文献   

11.
Studies of genetic population structure and genetic diversity are often critical components of endangered species conservation and management plans. Genetic studies are thus particularly important for amphibians, which are in global decline. We studied genetic variation and population structure among 276 individuals from approximately half of the known localities of the endangered Sonora tiger salamander, Ambystoma mavortium stebbinsi, using ten microsatellite loci. Allelic diversity was generally low (2.7 alleles per locus per population) and overall observed heterozygosity (0.191) was significantly lower than expected (0.332). Most populations showed significant departures from Hardy–Weinberg equilibrium, which are likely due to inbreeding. In addition, evidence of recent bottlenecks was suggested by shifted allele frequency distributions in 5 of 16 populations, and ratios of allele number to allele size range (M) values lower than critical values in all populations. A high degree of genetic subdivision (θ = 0.133) was found over all populations, and nearly all pairwise population combinations were genetically subdivided. Thus, gene flow is limited even over small distances, perhaps because high desert grassland throughout the study area limits the efficacy of inter-pond movement of salamanders. Further, population sizes and gene flow of Sonora tiger salamanders are likely compromised by several contemporary ecological threats, including: frequent die-offs due to an infectious virus, introductions of non-native species, and continuing cattle grazing. Overall, these genetic data support the endangered status of the Sonora tiger salamander and suggest the subspecies exists in small, inbred populations.  相似文献   

12.
Coscinium fenestratum is a critically endangered medicinal plant, well-known for its bioactive isoquinoline alkaloid berberine. The species has been over harvested from its natural habitats to meet the huge requirement of raw drug market and industrial consumption. This has lead to a rapid decline in the population size and has also led to local population extinction at few locations in the Western Ghats, India. In this study, inter-simple sequence repeat markers were used to investigate the genetic variation and population structure of seven extant populations of C. fenestratum from the central Western Ghats, India. Eight primer combination produced a total of 57 unambiguous bands, of which (47.1 %) were polymorphic. The species exhibited a moderate to low level of intra population genetic diversity (H s = 0.347 ± 0.008; H t = 0.378 ± 0.006 (POPGENE) and H s = 0.262 ± 0.0028; H t = 0.204 ± 0.020 (HICKORY)). The populations were low to moderately differentiated from one another (G ST = 0.221) and geographical distance was not significantly correlated with genetic distance, suggesting that these long-lived, geographically distant remnant populations were once connected through gene flow. There was a significant amount of genetic variation among populations (19.85 %). The Bayesian software STRUCTURE and HICKORY were used to further reveal the genetic structure of C. fenestratum. The results revealed weak population structure (K = 2) with one single widespread gene pool, and indicated that gene flow and inbreeding are likely to be the major driving force in shaping current population genetic structure of C. fenestratum. Thus, an understanding of the genetic diversity and population structure of C. fenestratum can provide insight into the conservation and management of this species.  相似文献   

13.
Type of reproduction has an important effect on the maintenance of particular populations and species persistence in time and space. This trait significantly influences the ecological and genetic structure of populations, and in consequence the evolution of species. The primary objectives of this study were: to estimate genetic diversity within and among populations of clonal species Goodyera repens from different populations in northeastern Poland, and to amount factors shaping the genetic structure of this orchid. Based on 451 rosettes of G. repens from 11 localities in northeastern Poland, we conducted a genetic population analysis using allozymes. We included information on population size, flowering, fruit set and seed dispersal to elucidate their influences on genetic diversity of this species. Populations differed according to demographic properties. The majority of seeds (86.4–94.8 %) were found at a distance of 0.2 m. We observed a high level of genetic (P PL = 50 %, A = 1.68, H O = 0.210, H E = 0.204) and genotypic diversity (G = 163, G/N S = 0.66, G U = 30.2 %), and low but statistically significant genetic differentiation among populations (F ST = 0.060; P < 0.001). We suggest that the genetic diversity of G. repens is mainly an effect of the abundance of pine and spruce forest communities suitable for this species in NE Poland and the high level of sexual reproduction.  相似文献   

14.
The stellate sturgeon, Acipenser stellatus, is a critically endangered fish species. Knowledge on its genetic diversity and population structure is urgently needed to enable the identification of management units in order to prevent extinction. Therefore, 18 species-specific, polymorphic microsatellite loci have been isolated using GS-FLX Titanium pyrosequencing, arranged into 6 multiplex PCR sets, and characterized in 52 individuals (20 farmed and 32 wild). The total number of alleles per locus varied between 3 and 36 with an average of 8.44. The wild individuals were more diverse with an average number of 8.17 alleles per locus than the farmed ones with 3.28 alleles per locus. Observed heterozygosities ranged from 0.050 to 0.950 in the farmed and from 0.094 to 0.969 in the wild individuals. Significant deviations from Hardy-Weinberg equilibrium were found at 3 loci of the farmed and 5 loci of the wild individuals. The two sturgeon groups were significantly differentiated (F ST = 0.118). The high sensitivity and discriminatory power of the 18 loci were proven by a very low overall probability of identity for siblings (PIsib = 8.73 × 10?6) and a high accuracy of self-classification (98%). Thus, these newly developed markers represent a valuable genetic toolbox to identify management units for species conservation and sustainable fisheries.  相似文献   

15.
The wild banana Musa ornata is an inhabitant of the tropical regions of Mexico characterized by patches of tropical rainforest. The overexploitation of its habitat has caused the extinction of several populations affecting diversity and population genetic structure of remaining ones. We used microsatellite markers to determine the genetic diversity and the population’s genetic structure of all extant populations. The thirty-two microsatellite loci previously characterized for M. acuminata and M. balbisiana were tested in M. ornata. Only twelve amplified. From these seven were polymorphic and were used for genetic analyses. The Nei’s diversity estimator shows low levels of genetic diversity (H e = 0.263) with a mean of 4.40 alleles per locus. Excess homozygosity was evident in all populations indicating high levels of inbreeding. F ST pairwise analyses and AMOVA indicated low genetic differentiation. However, 28 % of private alleles were registered, suggesting limited gene flow. Genetic distances, Jaccard’s coefficient and principal component analysis showed a good correspondence to geographical locations. The Mantel test performed was not significant. The results support the hypothesis of recent fragmentation events; therefore, not enough time has passed to detect differences between populations. However, it is also likely that results are caused by factors such as bottleneck, decline in pollinator populations, self-pollination and/or a tendency towards clonal reproduction. It is proposed that the preservation strategy focuses on maintaining all the remaining populations and ensuring their connectivity, so as to maintain gene flow and increase the genetic diversity of this species.  相似文献   

16.
The major goal of landscape genetics is to understand how landscape structure genetic variation in natural populations. We investigated molecular diversity in Acer opalus subsp. obtusatum sampled from 95 sites using 14 nuclear microsatellite loci. The average number of alleles per nuclear microsatellite locus differed among sampling sites; the number was high (4.9 alleles) in populations from the Basilicata and Molise regions, where heterozygosity was also high (0.679, Molise; 0.669, Basilicata). Differentiation between sites was often low (mean FST = 0.220), indicating few genetic differences between most sites. There was a clear excess of homozygotes (mean Ho = 0.450, mean He = 0.513) and a relatively high FIS (mean = 0.451), suggesting a consistent level of inbreeding in many A. opalus subsp. obtusatum populations. There was a significant pattern of isolation by distance across the study area (Mantel test; R2 = 0.0662, P < 0.001). Two assignment methods (Structure and Geneland) produced some similarities in their definitions of population structure, especially for populations from the Campania and Tuscany regions. These two important genetic discontinuities were not associated with any physical barriers.  相似文献   

17.
Genetic variation within and among six populations of Juniperus excelsa M. Bieb., in a common garden in Lakes District of Turkey, was analyzed using four nuclear microsatellite primer pairs originally developed for J. communis. A total of five loci were observed as Jc037 amplified two distinct size ranges. The number of alleles observed for the species varied from 2 to 13, with an average of 4.5 alleles per locus. The mean expected heterozygosity (H e) of populations was 0.584, after correction for null alleles. The mean F IS value (?0.014) was close to zero showing no significant deviation from Hardy–Weinberg equilibrium. A low level of genetic differentiation was observed among populations (F ST = 0.028; p < 0.001) and Nei’s genetic distance ranged from 0.014 to 0.120 between population pairs. Furthermore, there was no significant correlation between genetic distances on the one hand and geographic distances and trait differentiation on the other hand. However, the eastern populations Bey?ehir and Sorgun showed very similar genotypic structures and were differentiated from all other populations. A continuous monitoring of phenotypic traits and the association between nucleotide variation in functional genes and adaptive traits such as drought and frost tolerance of J. excelsa populations in common gardens will be useful to design effective conservation strategies in the future.  相似文献   

18.
We assessed the genetic structure and diversity of Reithrodontomys spectabilis, a critically endangered, endemic rodent from Cozumel Island, México. A total of 90 individuals were trapped from September 2001 to January 2005. Microsatellite data analysis revealed high genetic diversity values: a total of 113 alleles (average 12.5 per locus), H o  = 0.78, H e  = 0.80. These high values can be related to Cozumel’s size (478 km2) and extensive native vegetation cover, factors that could be promoting a suitable population size, high heterozygosity and the persistence of rare alleles in the species, as well as some long-term movement of individuals between sampling localities. A strong genetic structure was also observed, with at least four genetic groups, associated with a pattern of isolation by distance. We found a strong allelic and genetic differentiation shown between localities, with negligible recent gene flow and low inbreeding coefficients. The species life history and ecological characteristics—being nocturnal, semi-terrestrial, a good tree climber, having lunar phobia and significant edge effect—are likely affecting its genetic structure and differentiation. The high genetic diversity and population structure award R. spectabilis a significant conservation value. Our results can serve as a basis for future research and conservation of the species, particularly considering the problems the island is facing from habitat perturbation, urbanization and introduction of exotic species. In view of the structure and genetic variability observed, it is essential to establish and reinforce protected areas and management programs for the conservation of the endemic and endangered Cozumel Harvest mice.  相似文献   

19.
Population genetics has been recognized as a key component of policy development for fisheries and conservation management. In this study, natural sea bass (Lateolabrax japonicus) populations in three ocean basins in Korea were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 203 alleles and similarly high levels of genetic diversity [mean number of alleles (NA) = 14.43, mean expected heterozygosity (He) = 0.84] were detected. All populations showed significant heterozygote deficiency at four loci, which could be explained by the presence of null alleles. The genetic population subdivision was low and was significantly different according to F-statistics (overall F ST = 0.003, R ST = 0.005). However, this substructure was not supported by an analysis of molecular variance test, analyses of isolation by distance or Bayesian analysis. The passive dispersal of eggs/larvae via the main currents appears to facilitate gene flow. The possibility of a recent genetic bottleneck was observed in all three populations of L. japonicus, indicating that overfishing and degradation of the environment in recent years has led to a decline in the sea bass populations in Korea. Our study demonstrates that sea bass in Korea do not appear to be genetically partitioned and should be managed as a single unit; however, the potential for a rapid loss of genetic diversity remains. Information regarding the genetic characteristics of Korean sea bass populations has important implications for fishery management and conservation efforts and will aid in the sustainable exploitation of fishing resources and the preservation of biodiversity.  相似文献   

20.
When rare plants are distributed across a range of habitats, ecotypic differentiation may arise requiring customized conservation measures. The rate of local adaptation may be accelerated in complex landscapes with numerous physical barriers to gene flow. In such cases, examining the distribution of genetic diversity is essential in determining conservation management units. We investigated the distribution of genetic diversity in the federally threatened Camissonia benitensis (Onagraceae), which grows in two distinct serpentine habitats across several watersheds in San Benito, Fresno, and Monterey Cos., CA, USA. We compared genetic diversity with that of its two widespread relatives, C. contorta and C. strigulosa, and examined the potential for hybridization with the latter species. Genotyping results using seven heterospecific microsatellite markers indicate that differentiation between habitat types was weak (F ST = 0.0433) and in an AMOVA analysis, there was no significant partitioning of molecular variation between habitats. Watersheds accounted for 11.6 % of the molecular variation (pairwise F ST = 0.1823–0.4275). Three cryptic genetic clusters were identified by InStruct and STRUCTURE that do not correlate with habitat or watershed. C. benitensis exhibits 5–11× higher inbreeding levels and 0.54× lower genetic diversity in comparison to its close relatives. We found no evidence of hybridization between C. benitensis and C. strigulosa. To maximize conservation of the limited amount of genetic diversity in C. benitensis, we recommend mixing seed representing the three cryptic genetic clusters across the species’ geographic range when establishing new populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号