首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67–44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat.  相似文献   

2.
Larvae of the yellow mealworm, Tenebrio molitor, were used to screen isolates of field and storage fungi, included in their dietary substrate, for mycotoxins. Feeding of three isolates of Fusarium roseum, two of Fusarium equiseti and of Fusarium nivale, and one of an unidentified species of Fusarium resulted in growth depression of the larvae. One isolate of an unidentified species of Myrothecium was also toxic to larvae of Tenebrio molitor. Mycotoxin production was apparently dependent, not only on the fungal isolate, but also on the culture conditions under which the fungus was grown. Some fungal isolates had growth-promoting qualities for larvae of Tenebrio molitor.  相似文献   

3.
Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O2) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia.  相似文献   

4.
5.

Background

Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.

Key Findings

Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks), supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified) consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow); viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.

Conclusions

The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.  相似文献   

6.
The entomogenous fungi Beauveria bassiana (nine isolates), Metarhizium anisopliae (seven isolates), and Paecilomyces farinosus (four isolates) were tested as pathogens of larvae of the elm bark beetle, Scolytus scolytus. Single isolates of B. bassiana and M. anisopliae were also tested against adult beetles. Of the 21 isolates tested as conidial suspensions against larvae, all proved pathogenic. The three most and least virulent isolates were, respectively, isolates of B. bassiana and M. anisopliae. The other isolates fell between these two extremes, with the four P. farinosus isolates all moderately virulent. Spore retention on larvae following inoculation was estimated by washing conidia off the larvae. From the results it was possible to relate larval mortality to the approximate spore dose causing infection at different spore concentrations. Thus, application of spores of the three pathogens at a concentration of 103 spores/ml resulted in limited mortality. At this concentration, an average of only a single spore was recovered from the inoculated larva. Adult bark beetles also proved susceptible to infection by isolates of B. bassiana and M. anisopliae. They were exposed to discs of elm bark dipped in a conidial suspension. It was estimated that a dose of less than 100 spores could cause infection of beetles following feeding on the elm bark discs.  相似文献   

7.
The white grub species Phyllophaga polyphylla and Anomala cincta (Coleoptera: Melolonthidae) are economically important species that affect many crops in Mexico. A series of experiments to study the pathogenic interaction between isolates of Beauveria bassiana and Metarhizium anisopliae and these two insect species were undertaken. First, the susceptibility of third instar P. polyphylla larvae to each of seven isolates representing both species of fungus was evaluated by dipping the insects in 1?×?108 conidia?ml?1 suspensions. A second study examined the differences in the susceptibility of P. polyphylla and A. cincta larvae to two selected isolates for each of the fungal species. Finally, the susceptibility of A. cincta larvae to one M. anisopliae isolate when incubated in soil collected from four different sites was assessed. No significant differences in proportion of infection of P. polyphylla larvae were observed amongst the fungal isolates tested and mortality due to fungal infection was never greater than 20% after 36?days incubation. Anomala cincta larvae were more susceptible than P. polyphylla larvae, with greater than 90% infection when inoculated with isolates of M. anisopliae whereas mortalities of only 20% where achieved against P. polyphylla larvae. The soil type in which A. cincta were incubated following inoculation with M. anisopliae affected their susceptibility to infection. The results demonstrated that there is a complex interaction amongst entomopathogenic fungi, white grub larvae and soil properties, and points to the need of further investigation of this system in order to optimize the efficacy of entomopathogenic fungi against these insect species.  相似文献   

8.

Background

Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes.

Results

The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue.

Conclusions

A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.  相似文献   

9.

Background and Aims

Field studies have demonstrated that aluminum (Al) toxicity is low in no-till systems during cropping seasons that have adequate and well-distributed rainfall. This study evaluated the performance of corn (Zea mays L.) and soybean (Glycine max L. Merrill) on an acid loamy soil under a long-term no-till system, in response to surface liming and as affected by genotypic tolerance to Al and water stress.

Methods

A field trial examined the effect of surface application of lime (0, 4, 8, and 12 Mg ha?1) on no-till corn and soybean nutrition and yield. Trials were also carried out in undisturbed soil columns taken from the unlimed and limed plots. Two hybrids/cultivars of corn and soybean, one sensitive and the other moderately sensitive to Al were grown at two soil moisture levels with and without water stress (50 % and 80 % water filled pore space).

Results

Alleviating soil acidity by liming improved nutrition and increased grain yields of corn and soybean. The benefits of liming on root length density, nutrient uptake and shoot biomass production of corn and soybean were more pronounced in Al-sensitive genotypes under water stress.

Conclusions

The results suggest that plants exposed to drought stress under no-till systems are more affected by Al toxicity.  相似文献   

10.

Key message

Dendroclimatology can be a useful tool in assessing moisture stress tolerance in tree species that form distinct annual rings, especially in natural selection.

Abstract

This study is an attempt to demonstrate the use of dendroclimatology in assessing moisture stress response of teak. Genetic diversity of 48 teak clones was assessed using teak-specific microsatellite markers. Their growth rate was assessed in response to rainfall over 27 years. Dendroclimatological indicators such as mean ring-width index and mean sensitivity index of 48 clones showed close association between rainfall and growth. Lag-1 correlation (r = 0.9) indicated the possibility of carryover effect of rainfall on growth. Direct and positive relationship (R 2 = 0.81) between biomass of annual rings and rainfall across the age, which is contrary to relationship that exists between annual ring width and age, emphasizes the need to use biomass as an additional indicator of growth than annual ring width per se. The relationship seen between δ13C discrimination and seasonal difference of rainfall indicates the role of moisture in stomatal conductance and hence carbon assimilation process which is a driving force of growth especially under moisture stress conditions. Growth differences seen among the clones are an indication of diversity among the clones for drought tolerance. The genetic diversity analyzed using 15 microsatellite markers did not match with the moisture stress response seen among the clones which imply the need for developing more specific markers for identifying moisture stress tolerance in teak.  相似文献   

11.
We tested the pathogenicity of 18 Metarhizium anisopliae (Metschn.) Sorokin isolates and 22 Beauveria bassiana (Balsamo) Vuillemin isolates against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) larvae and adults. The efficacy of the most virulent isolate—M. anisopliae K—was evaluated in containers with a concrete bottom covered with wood shavings, under simulated poultry house conditions. Application of conidia of this isolate to the shavings or directly to the concrete bottom reduced the yield of larvae in 8–15 time compared with the control. In another test, the mortality of mature larvae placed on previously inoculated shavings or bottom reached 80–90% within 14 days, compared with 14% in the control. The residual activity of conidia kept at 28°C retained its initial level during 14 days post-inoculation, but declined after three weeks. Based on our data M. anisopliae has considerable potential for the control of A. diaperinus.
Michael SamishEmail: Email:
  相似文献   

12.

Aims

Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. The working hypothesis is that salt tolerance shapes the presence of these species in their specific habitats.

Methods

Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development.

Results

Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species’ salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution.

Conclusions

G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stress.  相似文献   

13.
14.

Key message

Carbonylation of proteins associated with a stress response may contribute to the lowered viability of naturally aged beech seeds, especially the desiccation tolerance-associated proteins and USP-like protein.

Abstract

Proteins are modified by a large number of reactions that involve reactive oxygen species-mediated oxidation. The direct oxidation of amino acids produces 2,4-dinitrophenylhydrazine-detectable protein products. Carbonylation is irreversible, and carbonylated proteins are marked for proteolysis or can escape degradation and form high molecular weight aggregates, which accumulate with age. Beech (Fagus sylvatica L.) seeds stored under optimal conditions for different periods of time, ranging from 2 to 13 years, were analyzed. Protein carbonylation was examined as a potential cause for the loss of viability of beech seeds, and the characteristic spots of protein carbonyls were identified. Here, we present and discuss the role of carbonylation in the proteome of beech seeds that contribute to the loss of seed viability during natural aging. The long-term storage of beech seeds is intricate because their germination capacity decreases with age and is negatively correlated with the level of protein carbonyls that accumulate in the seeds. We establish that protein synthesis, folding and degradation are the most affected biochemical traits in long-term stored beech seeds. In addition, we suggest that proteins associated with the stress response may have contributed to the lowered viability of beech seeds, especially the desiccation tolerance-associated proteins that include T-complex protein 1 and the universal stress protein (USP)-like protein, which is identified as carbonylated for first time here.  相似文献   

15.

Background

The promoted root growth under developmental plasticity triggered specifically by mild drought stress (MDS) is known to contribute to maintained water uptake and dry matter production (DMP).

Aims

To examine whether the expression of developmental plasticity of root systems and its contribution to DMP would be affected by the levels of nitrogen (N) application.

Methods

Two genotypes (CSSL50 derived from Nipponbare/Kasalath cross and Nipponbare) were grown under soil moisture gradients with a line source sprinkler system. Three N fertilizer treatments were used; 25 (low), 75 (standard) and 150 kg N ha?1 (high) in 2009 and 60 (low), 120 (standard) and 180 kg N ha?1 (high) in 2011.

Results

Across varying N level treatments, there were no significant differences in any of the traits examined between the two genotypes under well-watered and severe drought stress conditions. In contrast, under MDS conditions (15–25 % w/w of soil moisture content (SMC) in 2009 and 17–25 % w/w of SMC in 2011), CSSL50 showed greater DMP than Nipponbare. The difference, however, varied with N level treatments since CSSL50’s greater root system development under MDS, was more pronounced at standard and high N levels than at low N level than it was for Nipponbare.

Conclusions

N application enhanced the expression of plasticity in root system development at standard and high N levels as compared with low N level under MDS conditions, which contributed to the maintenance of DMP.  相似文献   

16.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

17.
Forty-seven isolates of Metarhizium anisopliae var. anisopliae (small-spored form) and five isolates of M. anisopliae var. major (large-spored form) obtained from widely separated geographical regions from various insect hosts were screened for virulence against Culex pipiens pipiens larvae. Pathogenesis was variable with mortalities ranging from 0 to 100%. However, much of the variation in mortality among small-spored isolates was due to lowered natural viabilities. The most virulent isolates were from Austria, Australia, and Brazil from insect species in three different orders. Isolates from the major strain were generally avirulent. There was no correlation of strain morphology, geographical region of isolation, or original host species with strain virulence. The strains most virulent to C. pipiens larvae were also highly infective to Aedes aegypti and Anopheles stephensi larvae. Virulence of two strains (E6 and E9) to C. pipiens larvae was significantly enhanced by one passage through a C. pipiens larval siphon. Relative potencies increased approximately 1.63 to 2.45 times. A smaller increase in virulence, depending upon the isolate, was also shown when these same strains were tested against A. aegypti and A. stephensi. Virulence of strain E9 was also increased significantly by passage through an alternate host, Nilaparvata lugens.  相似文献   

18.
19.

Background

Metarhizium anisopliae is an important fungal biocontrol agent of insect pests of agricultural crops. Genomics can aid the successful commercialization of biopesticides by identification of key genes differentiating closely related species, selection of virulent microbial isolates which are amenable to industrial scale production and formulation and through the reduction of phenotypic variability. The genome of Metarhizium isolate ARSEF23 was recently published as a model for M. anisopliae, however phylogenetic analysis has since re-classified this isolate as M. robertsii. We present a new annotated genome sequence of M. anisopliae (isolate Ma69) and whole genome comparison to M. robertsii (ARSEF23) and M. acridum (CQMa 102).

Results

Whole genome analysis of M. anisopliae indicates significant macrosynteny with M. robertsii but with some large genomic inversions. In comparison to M. acridum, the genome of M. anisopliae shares lower sequence homology. While alignments overall are co-linear, the genome of M. acridum is not contiguous enough to conclusively observe macrosynteny. Mating type gene analysis revealed both MAT1-1 and MAT1-2 genes present in M. anisopliae suggesting putative homothallism, despite having no known teleomorph, in contrast with the putatively heterothallic M. acridum isolate CQMa 102 (MAT1-2) and M. robertsii isolate ARSEF23 (altered MAT1-1). Repetitive DNA and RIP analysis revealed M. acridum to have twice the repetitive content of the other two species and M. anisopliae to be five times more RIP affected than M. robertsii. We also present an initial bioinformatic survey of candidate pathogenicity genes in M. anisopliae.

Conclusions

The annotated genome of M. anisopliae is an important resource for the identification of virulence genes specific to M. anisopliae and development of species- and strain- specific assays. New insight into the possibility of homothallism and RIP affectedness has important implications for the development of M. anisopliae as a biopesticide as it may indicate the potential for greater inherent diversity in this species than the other species. This could present opportunities to select isolates with unique combinations of pathogenicity factors, or it may point to instability in the species, a negative attribute in a biopesticide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-660) contains supplementary material, which is available to authorized users.  相似文献   

20.
Susceptibility of the white grub Cyclocephala signaticollis Burmeister (Coleoptera: Scarabaeidae: Dynastinae) larvae to seven isolates of Beauveria bassiana (Balsamo) Vuillemin, five of Metarhizium anisopliae (Metschnikoff) Sorokin and two of Paecilomyces lilacinus (Thom) Samson (Deuteromycotina: Hyphomycetes) was investigated. Among 14 fungal isolates screened the most virulent was a B. bassiana isolate (Bb 53) that caused 70% mortality of third instar larvae in 40 days after inoculation at 1 × 108 conida/ml. Strains of M. anisopliae and P. lilacinus showed low efficacy or no virulence to the target host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号