首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
表皮生长因子受体(EGFR)是细胞内多种信号调节通路的交汇点,其介导的信号通路与乳腺癌的发生、发展、转移和侵袭等密切相关,已成为乳腺癌治疗的新靶点之一。但目前关于秦皮素的抗乳腺癌作用与EGFR通路的关系,国内外尚未见相关报道。本研究结果表明,秦皮素能够通过抑制EGFR及其下游的AKT信号通路来发挥其抗乳腺癌作用。秦皮素在体外可促进T、B 淋巴细胞增殖及巨噬细胞吞噬能力,提示秦皮素可能促进小鼠免疫功能。Western印迹结果表明,秦皮素能显著抑制EGFR蛋白及其下游的AKT蛋白磷酸化水平。划痕实验结果表明,秦皮素能抑制MCF-7细胞的迁移。此外,秦皮素还能促进小鼠巨噬细胞的吞噬能力和代谢活力,促进T、B淋巴细胞的增殖,提高NK细胞的杀伤活力。本研究结果提示,秦皮素的抗乳腺癌作用是通过抑制EGFR信号通路,抑制MCF-7细胞迁移和促进小鼠的免疫功能等多种途径来实现的。  相似文献   

2.
乳腺癌的发生、发展与许多因素有关,其中免疫系统在其发生与发展过程中发挥重要作用。CD47是高表达于乳腺癌细胞表面的跨膜蛋白,其配体为凝血酶敏感蛋白-1(thrombospondin-1,TSP1)和信号调节蛋白α(signal-regulatory protein alpha,SIRPα),其中CD47/SIRPα信号通路可产生抑制性信号降低巨噬细胞的吞噬作用,产生免疫逃逸。在乳腺癌细胞中CD47表达上调,且高表达的CD47提示预后不良。采用抗CD47抗体可以阻断肿瘤细胞CD47/SIRPα通路介导的抑制吞噬作用,目前抗CD47单克隆抗体的免疫疗法正逐步走向临床试验。本文主要阐述CD47的结构、生理功能及其与肿瘤相关巨噬细胞的关系,并对CD47在乳腺癌中的表达及与预后的关系、在免疫治疗中的作用进行综述。  相似文献   

3.
神经干细胞作为一种具有自我更新能力和多向分化潜能的细胞,它的增殖和分化受到多种源于自身或外在、邻近或远程细胞信号通路的调控,各种细胞因子及胞间通讯在神经干细胞的增殖和分化中发挥着重要的作用。近年来的多种研究表明,Notch信号通路正是这样一种可以通过相邻细胞的配体与受体相互作用,从而传递信号,进一步发挥其生物学功能的重要信号通路。该通路参与了神经干细胞维持自我形态及向多种具有不同功能的神经细胞分化的过程.对于研究神经干细胞的增殖和分化具有巨大的意义。该文将就当前Notch信号通路对神经干细胞增殖分化影响的相关研究进行简要综述。  相似文献   

4.
乳腺癌是女性中常见的恶性肿瘤之一.乳腺癌的发生、发展、转移及耐药性的产生与细胞内的信号通路密切相关,其中雌激素受体(estrogen receptor,ER)信号通路、胰岛素样生长因子受体(insulin-like growth factor receptor,IGFR)信号通路和表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路尤为重要.深入了解ER、IGFR和EGFR三条信号通路的作用机制及它们之间的交叉对话对于寻找新的更有效的肿瘤治疗靶点至关重要.本文综述了近年来有关ER、IGFR和EGFR三条信号通路研究进展及这三条通路与乳腺癌关系.  相似文献   

5.
目的分析细胞增殖抗原Ki-67与雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)和人表皮生长因子受体(human epidermal growth factorreceptor-2,HER-2)在乳腺癌表达的相关性,探讨Ki-67在基底细胞样型乳腺癌和非基底细胞样型乳腺癌的表达与临床病理特征的关系。方法选取65例女性浸润性乳腺癌标本,其中包括27例基底细胞样型乳腺癌,38例非基底细胞样型乳腺癌及癌旁组织标本,采用免疫组织化学技术检测Ki-67、ER、PR、HER2在乳腺癌的表达。结果 65例乳腺癌中,Ki-67表达与ER、PR呈负相关,与HER2无相关性。在基底细胞样型乳腺癌组织中,Ki-67在细胞核强阳性表达。基底细胞样型乳腺癌与非基底细胞样型乳腺癌比较,Ki-67表达与组织学分级相关,组织学分级越高,Ki-67表达越强。结论 Ki-67可能参与基底细胞样型乳腺癌的发生发展,对预后评价有重要的参考价值。  相似文献   

6.
Wnt信号通路调控细胞增殖、再生、分化等多种细胞生物学过程。近年来研究表明,Wnt信号通路参与干细胞成软骨分化的起始、间充质的凝集、分化和肥大等一系列阶段。阐明其具体机制对软骨损伤修复及软骨功能的维持十分重要。该文就经典和非经典Wnt信号通路调控干细胞成软骨分化的研究进展进行综述。  相似文献   

7.
肿瘤干细胞是指肿瘤细胞群体中的未分化细胞,能够自我更新及无限增殖;通常具有正常干细胞样的多潜能性,可以分化产生异质性的肿瘤细胞及组织,对于传统的化疗药物具有耐药性。肿瘤干细胞与正常干细胞有一定的差异,如某些信号通路异常活化、细胞表面表达特异的分子等。针对肿瘤干细胞的这些特性,科学家们提出新的肿瘤治疗策略,即通过设计特异的抗体药物靶向信号通路或者细胞表面分子等,从根源上杀死肿瘤起始细胞,从而达到彻底治愈恶性肿瘤的目的。该文介绍了针对不同信号通路(如Notch和Wnt)或肿瘤细胞表面标志分子(如Ep CAM和CD44等)的抗体药物,并且探讨了抗体药物的优点以及面临的问题。  相似文献   

8.
全反式维甲酸(ATRA)是具有融合基因PML-RARα的急性早幼粒细胞白血病(APL)特异的靶向治疗药物。此外,ATRA在无PML-RARα融合的急性髓系白血病及其它一些肿瘤中也有一定治疗效果。但ATRA治疗也会引起一些并发症或发生愈后复发。因此,对ATRA诱导分化调控机制的研究非常重要。转谷氨酰胺酶2(TGM2)是一种多功能酶,能调控mTOR信号通路和自噬等。ATRA能诱导APL细胞中TGM2表达上调,TGM2敲低抑制ATRA诱导的细胞分化。但其调控机制及涉及的信号通路尚不明确。本研究发现,在HL60和U937细胞中,ATRA能够上调CD11b和TGM2的表达(P<0.05),抑制mTOR信号通路,并增强自噬;与对照相比,敲低TGM2,mTOR信号通路增强,自噬被抑制,而ATRA诱导的CD11b表达被抑制(P<0.05),分化减弱,被ATRA抑制的mTOR信号通路得到部分恢复,而被ATRA增强的自噬适当减弱。这表明ATRA使HL60和U937细胞发生髓系分化,并诱导TGM2表达升高;而TGM2通过mTOR信号通路和自噬途径调控ATRA诱导的髓系分化。该研究将有利于更深入地...  相似文献   

9.
段续接  刘淑英 《生命科学》2023,(10):1249-1258
Hippo信号通路是20世纪末在黑腹果蝇中进行基因筛选时发现的,该通路受各种生化、物理和结构信号的影响,调控细胞生长、分化,组织和器官发育以及内环境稳态等基本生物学过程。研究表明Hippo信号通路失调会引起一系列疾病的发生。本文阐述了目前Hippo信号通路在胚胎发育、器官和组织稳态调节、肿瘤的发生发展和细胞自噬等一系列生物学过程以及靶向治疗中的研究进展,其中Hippo信号通路通过细胞自噬来维持机体细胞内环境稳态成为新的研究热点。对该通路的功能和调控机制的深入研究也为组织器官修复再生医学及癌症治疗提供参考。  相似文献   

10.
目的:探讨中心体相关蛋白Cep55在基底细胞样型乳腺癌中的表达及其与基底细胞样型乳腺癌临床病理特征的关系.方法:选取本院收集的66例基底细胞样型乳腺癌和66例癌旁正常乳腺组织标本后,运用石蜡包埋、切片后,采用免疫组化法(EnVision二步法)检测Cep55的表达,并分析其与基底细胞样型乳腺癌临床病理特征之间的相关性.结果:(1)基底细胞样型乳腺癌和癌旁正常乳腺组织中Cep55的阳性表达率分别为74.2%和16.7%,差异有统计学意义(P<0.05).(2)不同的年龄、绝经与否、肿块大小的基底细胞样型乳腺癌患者Cep55的表达无明显差异(P>0.05),不同TNM分期、淋巴结转移与否的基底细胞样型乳腺癌患者Cep55的表达比较差异有显著统计学意义(P<0.05).结论:Cep55的表达上调与基底细胞样型乳腺癌的发生和发展有关.  相似文献   

11.
Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.  相似文献   

12.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

13.
Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers.  相似文献   

14.
Basal-like breast cancers have several well-characterized distinguishing molecular features, but most of these are features of the cancer cells themselves. The unique stromal-epithelial interactions, and more generally, microenvironmental features of basal-like breast cancers have not been well characterized. To identify characteristic microenvironment features of basal-like breast cancer, we performed cocultures of several basal-like breast cancer cell lines with fibroblasts and compared these with cocultures of luminal breast cancer cell lines with fibroblasts. Interactions between basal-like cancer cells and fibroblasts induced expression of numerous interleukins and chemokines, including IL-6, IL-8, CXCL1, CXCL3, and TGFβ. Under the influence of fibroblasts, basal-like breast cancer cell lines also showed increased migration in vitro. Migration was less pronounced for luminal lines; but, these lines were more likely to have altered proliferation. These differences were relevant to tumor biology in vivo, as the gene set that distinguished luminal and basal-like stromal interactions in coculture also distinguishes basal-like from luminal tumors with 98% accuracy in 10-fold cross-validation and 100% accuracy in an independent test set. However, comparisons between cocultures where cells were in direct contact and cocultures where interaction was solely through soluble factors suggest that there is an important impact of direct cell-to-cell contact. The phenotypes and gene expression changes invoked by cancer cell interactions with fibroblasts support the microenvironment and cell-cell interactions as intrinsic features of breast cancer subtypes.  相似文献   

15.
Genome wide association studies (GWAS) have identified low penetrance and high frequency single nucleotide polymorphisms (SNPs) that contribute to genetic susceptibility of breast cancer. The SNPs at 16q12, close to the TOX3 and CASC16 genes, represent one of the susceptibility loci identified by GWAS, showing strong evidence for breast cancer association across various populations. To examine molecular mechanisms of TOX3 regulation in breast cancer, we investigated both genetic and epigenetic factors using cell lines and datasets derived from primary breast tumors available through The Cancer Genome Atlas (TCGA). TOX3 expression is highly up-regulated in luminal subtype tumors compared to normal breast tissues or basal-like tumors. Expression quantitative trait loci (eQTL) analyses revealed significant associations of rs3803662 and rs4784227 genotypes with TOX3 expression in breast tumors. Bisulfite sequencing of four CpG islands in the TOX3 promoter showed a clear difference between luminal and basal-like cancer cell lines. 5-Aza-2’-deoxycytidine treatment of a basal-like cancer cell line increased expression of TOX3. TCGA dataset verified significantly lower levels of methylation of the promoter in luminal breast tumors with an inverse correlation between methylation and expression of TOX3. Methylation QTL (mQTL) analyses showed a weak or no correlation of rs3803662 or rs4784227 with TOX3 promoter methylation in breast tumors, indicating an independent relationship between the genetic and epigenetic events. These data suggest a complex system of TOX3 regulation in breast tumors, driven by germline variants and somatic epigenetic modifications in a subtype specific manner.  相似文献   

16.
17.
18.
19.
Aberrant sonic hedgehog (SHH)/glioma-associated oncogene (GLI) signaling has been shown in the development of many tumors. The aims of the present study are to determine the expression of two SHH signaling molecules, the glioma-associated oncogene homolog 1 (GLI1) and forkhead box C2 (FOXC2), in invasive breast cancers (IBC), to evaluate their association with clinicopathological parameters, and to determine their prognostic significance in breast cancer patients. Expression of GLI1 and FOXC2 were assessed by immunohistochemical analysis of a tissue microarray containing 262 unselected IBC cases. A statistical analysis was performed to assess the correlation of GLI1 and FOXC2 expression with the patients' clinicopathological parameters, postoperative survival rate, and molecular subtypes. Immunoreactivity of GLI1 and FOXC2 was observed in 84% and 75% of all breast cancer tissues, respectively. There was a significant correlation between nuclear FOXC2 and GLI1 expressions in these breast cancers, which was associated with estrogen receptor (ER) negativity. Furthermore, there was a significant association between nuclear expression of GLI1 and FOXC2 and a basal-like breast cancer phenotype. Patients with nuclear GLI1 or FOXC2-expressing tumors had a significantly shorter survival time than those without nuclear FOXC2 or GLI1 expression. Multivariate analysis showed that nuclear GLI1 or FOXC2 expression was an independent factor for predicting the prognosis of basal-like breast cancer. In conclusion, there was a significant correlation between expression of nuclear GLI1 or FOXC2 and human breast cancer. More specifically, elevated levels of these proteins were associated with the basal-like breast cancer phenotype and with a poor rate of disease-free survival. These data suggest that GLI1 and FOXC2 are involved in tumorigenesis and that they may be useful as diagnostic and therapeutic targets for human basal-like breast cancers. Additional studies are warranted to better understand the biological significance of GLI1 and FOXC2, to further refine statistics related to patient prognosis, and to optimize treatment of patients with basal-like breast cancer.  相似文献   

20.

Background

CD44, a transmembrane glycoprotein, is a major receptor for extracellular proteins involved in invasion and metastasis of human cancers. We have previously demonstrated that the novel Gemini vitamin D analog BXL0124 [1α,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluro-cholecalciferol] repressed CD44 expression in MCF10DCIS.com basal-like human breast cancer cells and inhibited MCF10DCIS xenograft tumor growth. In the present study, we investigated potential factors downstream of CD44 and the biological role of CD44 repression by BXL0124 in MCF10DCIS cells.

Methods and Findings

The treatment with Gemini vitamin D BXL0124 decreased CD44 protein level, suppressed STAT3 signaling, and inhibited invasion and proliferation of MCF10DCIS cells. The interaction between CD44 and STAT3 was determined by co-immunoprecipitation. CD44 forms a complex with STAT3 and Janus kinase 2 (JAK2) to activate STAT3 signaling, which was inhibited by BXL0124 in MCF10DCIS cells. The role of CD44 in STAT3 signaling and invasion of MCF10DCIS cells was further determined by the knockdown of CD44 using small hairpin RNA in vitro and in vivo. MCF10DCIS cell invasion was markedly decreased by the knockdown of CD44 in vitro. The knockdown of CD44 also significantly decreased mRNA expression levels of invasion markers, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), in MCF10DCIS cells. In MCF10DCIS xenograft tumors, CD44 knockdown decreased tumor size and weight as well as invasion markers.

Conclusions

The present study identifies STAT3 as an important signaling molecule interacting with CD44 and demonstrates the essential role of CD44-STAT3 signaling in breast cancer invasion. It also suggests that repression of CD44-STAT3 signaling is a key molecular mechanism in the inhibition of breast cancer invasion by the Gemini vitamin D analog BXL0124.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号