首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A central hypothesis of eco-immunology proposes trade-offs between immune defences and competing physiological and behavioural processes, leading to immunological variation within and among annual-cycle stages, as has been revealed for some species. However, few studies have simultaneously investigated patterns of multiple immune indices over the entire annual cycle in free-living birds, and none has investigated the consistency of seasonal patterns across multiple years. We quantified lysis, agglutination, haptoglobin, leukocyte profiles, and body mass in free-living skylarks (Alauda arvensis) through two complete annual cycles and within and between four breeding seasons. The skylarks?? annual cycle is characterised by annually repeated changes in energy and time budgets, social structure and diet. If trade-offs relating to these cyclic changes shape evolution, predictable intra-annual immune patterns may result. Alternatively, intra-annual immune patterns may vary among years if fluctuating environmental changes affect the cost?Cbenefit balances of immune function. We found significant variation in immune indices and body mass across the annual cycle, and these patterns differed between years. Immune parameters differed between four breeding seasons, and in all years, lysis and agglutination increased as the season progressed independent of average levels. Population-level patterns (intra-annual, inter-annual, within breeding season) were consistent with within-individual patterns based on repeated measurements. We found little evidence for sex differences, and only haptoglobin was correlated (negatively) with body mass. We conclude that immune modulation is not simply a pre-programmed phenomenon that reflects predictable ecological changes. Instead, fluctuating environmental conditions that vary among years likely contribute to the immunological variation that we observed.  相似文献   

2.
Investment in immunity is commonly viewed as an energetically costly activity in birds. Although several studies have focused on the energy cost of mounting an immune response and its concomitant physiological trade‐offs, nothing is known about the metabolic adjustments experienced by immunochallenged birds under resource limitation, or about the basal metabolism cost of mounting cell‐mediated immune (CMI) responses in bird species other than non‐migratory passerines. Here we measured the basal metabolic rate (BMR), inflammatory response, and body mass in ad libitum fed and food‐restricted little ringed plovers Charadrius dubius challenged with phytohemagglutinin (PHA) in order to assess the energy cost, the strength, and the time course of the CMI response in a long‐distance migratory bird in different nutritional states. We found that ad libitum birds injected with PHA significantly increased both mass‐independent BMR and inflammatory response, whereas birds with an induced food restriction‐immune response overlap experienced a mass‐independent BMR downregulation and decreased inflammatory response relative to ad libitum birds. We suggest that both the BMR downregulation and the diminished inflammatory response observed in birds facing such an overlap could be energy‐saving mechanisms to maintain the body mass above a critical level and maximize fitness.  相似文献   

3.
To study whether mounting an immune response is energetically costly, mice from two lines divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate (BMR) were immunized with sheep red blood cells. Their energy budgets were then additionally burdened by sudden transfer from an ambient temperature of 23 degrees C to 5 degrees C. We found that the immune response of H-BMR mice was lower than that of L-BMR mice. However, the interaction between line affiliation and ambient temperature was not significant and cold exposure did not result in immunosuppression in either line. At 23 degrees C the animals of both lines seemed to cover the costs of immune response by increasing food consumption and digestive efficiency. This was not observed at 5 degrees C, so these costs must have been covered at the expense of other components of the energy budget. Cold exposure itself elicited a considerable increase in food intake and the mass of internal organs, which were also heavier in H-BMR than in L-BMR mice. However, irrespective of the temperature or line affiliation, immunized mice had smaller intestines, while cold-exposed immunized mice had smaller hearts. Furthermore, the observed larger mass of the liver and kidneys in immunized mice of both lines kept at 23 degrees C was not observed at 5 degrees C. Hence, immunization compromised upregulation of the function of metabolically active internal organs, essential for meeting the energetic demands of cold. We conclude that the difficulties with a straightforward demonstration of the energetic costs of immune responses in these animals stem from the extreme flexibility of their energy budgets.  相似文献   

4.
Growing feathers and mounting immune responses are both energetically costly for birds. According to the life history trade‐off hypothesis, it has been posited that the costs of feather growth lead to temporal isolation between molt and other expensive activities, reproduction for example. In contrast to life cycle events, the need to mount an immune response can occur at any time, including during feather growth. Thus, we hypothesized that mounting an immune response during feather growth may divert energy and resources from feather growth and impair feather renewal. To test this hypothesis, we clipped or plucked the same feathers of male house sparrows Passer domesticus biblicus. In the clipped group (n = 16), the feathers were absent with no regrowth; in the plucked group (n = 14), feathers were absent and regrowth was initiated. We also had an intact control group of 15 sparrows. We then initiated an inflammatory immune response by subcutaneous injection over the left breast muscle of the birds with a lipopolysaccharide (LPS) and quantified behavioral and physiological responses. We predicted that sparrows with plucked feathers would incur the highest energetic costs while mounting an immune response, and would increase their foraging effort to offset this cost. We found no difference in body mass and resting metabolic rates among sparrows subjected to the different feather and immune treatments. However, we did find that while sparrows with plucked feathers increased foraging efficiency following the immune challenge by paying fewer but longer visits to the food tray, allowing them to maintain food consumption. Foraging efficiency in sparrows with clipped feathers was reduced. We also found that quality of newly grown feathers after the immune challenge was poorer in the plucked group, suggesting that mounting an immune response competes with feather growth for resources.  相似文献   

5.
The thermoregulatory capacity and metabolic responses to light–dark cycles under various mild food-deprivation treatments were measured in Bronze Mannikins Spermestes cucullatus (10–11 g). We measured the response of minimum oxygen consumption to ambient temperature in order to determine the basal metabolic rate (BMR), thermal conductance and limits of thermoneutrality of the Mannikins. In addition, we measured oxygen consumption in response to light–dark cycles and three mild food-deprivation treatments. Bronze Mannikins have a low BMR (1.67 mlO2/g/h) that is c. 50–60% of that predicted from phylogenetically independent allometric curves for all birds. A low BMR resulted in amplitudes of metabolism between the active and rest phases that were double those predicted allometrically from body mass. The reduced nocturnal metabolic rate did not represent torpor. Typically, Mannikins would need to reduce their metabolic rate during the rest phase to c. 17% of BMR to attain the average torpor metabolic rate of other birds. The data are, however, consistent with those of other group-living Afrotropical birds that benefit energetically from group huddling in environments in which moderate seasonality is accompanied by unpredictable climates – and thus unpredictable energy inputs in time and space. When food-deprived and placed under moderate cold stress (20 °C), Mannikins decreased their rest-phase metabolic rates to the same magnitude as several small Holarctic birds. We suggest that, in the context of the progress made to quantify and define proximate heterothermic responses in endotherms, such as torpor and hibernation, the term nocturnal hypothermia often applied to moderate nocturnal reductions in metabolic rate is vague, misleading and inappropriate.  相似文献   

6.
Costs of immunity are widely believed to play an important role in life history evolution, but most studies of ecological immunology have considered only single aspects of immune function. It is unclear whether we should expect correlated responses in other aspects of immune function not measured, because individual branches of immune defence may differ in their running costs and thus may compete unequally for limiting resources, resulting in negatively correlated evolution. In theory such selection pressure may be most intense where species are hosts to more virulent parasites, thus facing a higher potential cost of parasitism. These issues are relatively unstudied, but could influence the efficacy of attempting to estimate the scale and cost of host investment in immune defence. Here, in a comparative study of birds we found that species that scavenge at carcasses, that were hypothesised to be hosts to virulent parasites, had larger spleens for their body size and higher blood total leukocyte concentrations (general measures of immune function) than non-scavengers. These results support the hypothesis that scavengers are subject to strong parasite-mediated selection on immune defences. However, measures of specific branches of immune function revealed that scavengers had a relatively lower proportion of lymphocytes than phagocytic types of leukocytes, suggesting robust front line immune defences that could potentially reduce the need for mounting relatively energetically costly lymphocyte-dependent immune responses. Following experimental inoculation, scavengers produced significantly larger humoral immune responses, but not cell-mediated immune responses, than non-scavengers. However, the sizes of cell-mediated and humoral immune responses were not correlated across species. These results suggest that single measures of immune defence may not characterise the overall immune strategy, or reveal the likely costs involved.  相似文献   

7.
Black-legged kittiwakes (BLKIs) reduce self-maintenance cost through reductions in mass-specific basal metabolic rate (BMR), body mass and the size of visceral organs during the chick-rearing period. In the present study, we measured kidney in vitro oxygen consumption and plasma 3,3',5-triiodo-L: -thyronine (T3) levels of incubating and chick-rearing female BLKIs, to test whether the decrease in BMR is caused mainly by decreased metabolic intensity or simply by reductions in the size of organs with high metabolic intensity. Body mass and body condition were lower in chick-rearing birds compared with the incubating birds. In contrast to the previous findings, however, the kidney mass did not differ between the two breeding stages. Plasma T3 levels decreased substantially during the breeding season, indicating a reduction in BMR. Over the same period, kidney mass-specific oxygen consumption decreased (by 17.2%) from the incubating to the chick-rearing stage. Thus, the reduction in BMR found in breeding BLKIs seems partly explained by adjustments in metabolic intensity of visceral organs. Lowered metabolic intensity of visceral organs would permit increased allocation of energy to offspring at the expense of their own self-maintenance.  相似文献   

8.
Migratory shorebirds have some of the highest fat loads among birds, especially species which migrate long distances. The upland sandpiper Bartramia longicauda makes long‐distance migrations twice a year, but variation in body condition or timing of feather molt during the non‐breeding season has not been studied. Molt is an important part of the annual cycle of migratory birds because feather condition determines flight performance during migration, and long‐distance movements are energetically costly. However, variation in body condition during molt has been poorly studied. The objective of our field study was to examine the timing and patterns of feather molt of a long distance migratory shorebird during the non‐breeding season and test for relationships with body size, fat depots, mass, and sex. Field work was conducted at four ranches in the Northern Campos of Uruguay (Paysandú and Salto Departments). We captured and marked 62 sandpipers in a 2‐month period (Nov–Jan) during four non‐breeding seasons (2008–2012). Sex was determined by genetic analyses of blood samples taken at capture. Molt was measured in captured birds using rank scores based on published standards. Body mass and tarsus length measurements showed female‐biased sexual size dimorphism with males smaller than females. Size‐corrected body mass (body condition) showed a U‐shaped relationship with the day of the season, indicating that birds arrived at non‐breeding grounds in relatively good condition. Arriving in good body condition at non‐breeding grounds is probably important because of the energetic demands due to physiological adjustments after migration and the costs of feather molt.  相似文献   

9.
Shorebirds have high resting and field metabolic rates relative to many other bird groups, and this is posited to be related to their high‐energy lifestyle. Maximum metabolic outputs for cold or exercise are also often high for bird groups with energetically demanding lifestyles. Moreover, shorebirds demonstrate flexible basal and maximal metabolic rates, which vary with changing energy demands throughout the annual cycle. Consequently, shorebirds might be expected to have high maximum metabolic rates, especially during migration periods. We captured least Calidris minutilla and pectoral C. melanotos sandpipers during spring and fall migration in southeastern South Dakota and measured maximal exercise metabolic rate (MMR; least sandpipers only), summit metabolic rate (Msum, maximal cold‐induced metabolic rate) and basal metabolic rate (BMR, minimum maintenance metabolic rate) with open‐circuit respirometry. BMR for both least and pectoral sandpipers exceeded allometric predictions by 3–14%, similar to other shorebirds, but Msum and MMR for both species were either similar to or lower than allometric predictions, suggesting that the elevated BMR in shorebirds does not extend to maximal metabolic capacities. Old World shorebirds show the highest BMR during the annual cycle on the Arctic breeding grounds. Similarly, least sandpiper BMR during migration was lower than on the Arctic breeding grounds, but this was not the case for pectoral sandpipers, so our data only partially support the idea of similar seasonal patterns of BMR variation in New World and Old World shorebirds. We found no correlations of BMR with either Msum or MMR for either raw or mass‐independent data, suggesting that basal and maximum aerobic metabolic rates are modulated independently in these species.  相似文献   

10.
Pathogens may induce different immune responses in hosts contingent on pathogen characteristics, host characteristics, or interactions between the two. We investigated whether the broadly effective acute-phase response (APR), a whole body immune response that occurs in response to constitutive immune receptor activation and includes fever, secretion of immune peptides, and sickness behaviors such as anorexia and lethargy, varies with pathogen identity in the house sparrow (Passer domesticus). Birds were challenged with a subcutaneous injection of either a glucan at 0.7 mg/kg (to simulate fungal infection), a synthetic double-stranded RNA at 25 mg/kg (to simulate viral infection), or LPS at 1 mg/kg (to simulate a gram-negative bacterial infection), and then body mass, core body temperature changes, sickness behaviors, and secretion of an acute-phase protein, haptoglobin, were compared. Despite using what are moderate-to-high pyrogen doses for other vertebrates, only house sparrows challenged with LPS showed measurable APRs. Febrile, behavioral, and physiological responses to fungal and viral mimetics had minimal effects.  相似文献   

11.
Parental effects play a vital role in shaping offspring phenotype. In birds, incubation behaviour is a critical parental effect because it influences the early developmental environment and can therefore have lifelong consequences for offspring phenotype. Recent studies that manipulated incubation temperature found effects on hatchling body composition, condition and growth, suggesting that incubation temperature could also affect energetically costly physiological processes of young birds that are important to survival (e.g. immune responses). We artificially incubated wood duck (Aix sponsa) eggs at three biologically relevant temperatures. Following incubation, we used two immunoassays to measure acquired immune responses of ducklings. Ducklings incubated at the lowest temperature had reduced growth, body condition and responses to both of our immune challenges, compared with those from the higher temperatures. Our results show that incubation temperatures can be an important driver of phenotypic variation in avian populations.  相似文献   

12.
Host immune defence and migration in birds   总被引:9,自引:0,他引:9  
Migratory birds are exposed to at least two different parasite faunas during their annual cycle, while resident birds only experience a single parasite fauna. Migratory birds should therefore have evolved mechanisms to control or reduce the negative impact of infections from a more diverse parasite fauna. In a comparison of pairs of closely related species of birds that differ with respect to whether they are migratory or residents, the size of two immune defence organs (the bursa of Fabricius and the spleen) was consistently larger in the migratory species. Since the bursa is only found in juvenile, sexually immature birds, we conclude that immune defence adaptations to the impact of a more diverse parasite fauna in migrants already exist before the start of the first migration. Interspecific differences in investment in immune defence between migratory and resident birds have implications for our understanding of complex host–parasite interactions, the acquisition of new hosts by parasites, and the susceptibility of migratory birds to environmental perturbations.  相似文献   

13.
We investigated a postulated trade-off between reproduction and immune function by comparing the energetic costs of an immune response with phytohemagglutinin challenge (or injection) in castrated (low testosterone [T]) and intact (high T) Japanese Quail (Coturnix coturnix). Intact birds had higher resting metabolic rate (RMR) and significantly lower immune response than castrates. RMR of intact birds did not change in response to an immune challenge, suggesting that maintenance of reproductive tissues and associated high T is both immunosuppressive and energetically costly. Despite having a greater immune response than intact quail, castrates had a lower pre-challenge RMR than intact birds and paradoxically tended to decrease RMR during an immune challenge. This paradox may be because of pro-inflammatory cytokines that are released during immune responses. Cytokines promote energy conservation through malaise and soporific behaviors, possibly explaining the co-occurrence of a relatively strong immune response and a decrease in nocturnal RMR in castrates. The lower immune response in intact birds may not elicit as great a response of pro-inflammatory cytokines owing to an already elevated RMR from reproductive state, thus reducing any effect on RMR. The suppressed immune response and elevated RMR in intact birds may be because of T; however, we cannot separate the effects of T per se from the metabolic requirements of reproductive tissues.  相似文献   

14.
Remigial moult is one of the crucial events in the annual life cycle of waterfowl as it is energetically costly, lasts several weeks, and is a period of high vulnerability due to flightlessness. In waterfowl, remigial moult can be considered as an energy-predation trade-off, meaning that heavier individuals would minimise the flightless period by increasing feather growth rate and energy expenditure. Alternatively, they could reduce body mass at the end of this period, thereby reducing wing-loading to increase flight capability. We studied timing of remigial moult, primary growth rates, flightlessness duration, and the pattern of body mass variation in 5 species of captive seaducks (Melanitta fusca, M. perspicillata, Clangula hyemalis, Histrionicus histrionicus, and Somateria mollissima) ranging in size from 0.5 to 2.0 kg. Their feather growth rates weakly increased with body mass (M0.059) and no correlation was found at the intra-specific level. Consequently, heavier seaduck species and especially heavier individuals had a longer flightless period. Although birds had access to food ad libidum, body mass first increased then decreased, the latter coinciding with maximum feather growth rate. Level of body mass when birds regained flight ability was similar to level observed at the beginning of remigial moult, suggesting they were not using a strategic reduction of body mass to reduce the flightlessness duration. We suggest that the moulting strategy of seaducks may be the result of a compromise between using an intense moult strategy (simultaneous moult) and a low feather growth rate without prejudice to feather quality. Despite the controlled captive status of the studied seaducks, all five species as well as both sexes within each species showed timing of moult reflecting that of wild birds, suggesting there is a genetic component acting to shape moult timing within wild birds.  相似文献   

15.
Foraging adaptations include behavioral and physiological responses, but most optimal foraging models deal exclusively with behavioral decision variables, taking other dimensions as constraints. To overcome this limitation, we measured behavioral and physiological responses of European starlings Sturnus vulgaris to changes in food availability in a laboratory environment. The birds lived in a closed economy with a choice of two foraging modes (flying and walking) and were observed under two treatments (hard and easy) that differed in the work required to obtain food. Comparing the hard with the easy treatment, we found the following differences. In the hard treatment, daily amount of work was higher, but daily intake was lower. Even though work was greater, total daily expenditure was smaller, partly because overnight metabolism was lower. Body mass was lower, but daily oscillation in body mass did not differ. Feces' caloric density was lower, indicating greater food utilization. Energy expenditure rate expressed as multiples of basal metabolic rate (BMR) increased during the working period from 3.5 x BMR (easy) to 5.2 x BMR (hard), but over the 24-h period, it was close to 2.4 x BMR in both treatments. We also found that rate of expenditure during flight was very high in both treatments (52.3 W in easy and 45.5 W in hard), as expected for short (as opposed to cruising) flights. The relative preferences between walking and flying were incompatible with maximizing the ratio of energy gains per unit of expenditure (efficiency) but compatible with maximizing net gain per unit of time during the foraging cycle (net rate). Neither currency explained the results when nonforaging time was included. Time was not a direct constraint: the birds rested more than 90% of the time in both treatments. Understanding this complex picture requires reasoning with ecological, physiological, and cognitive arguments. We defend the role of optimality as an appropriate tool to guide this integrative perspective.  相似文献   

16.
Phenotypic flexibility of organs in migratory birds has been documented for a variety of species of different genera during the migratory period. However, very little is known about phenotypic mass changes of organs with respect to other events within the annual cycle. This seems particularly interesting when birds face different physiological challenges in quick succession. We investigated mass changes of 13 organs from garden warblers (Sylvia borin) during the transition from moult to migration. These long-distance migratory birds perform a complete moult within their wintering area just shortly before the onset of spring migration. Birds were sampled in three successive stages according to their moult status: group I consisted of birds with growing primary or secondary wing feathers, group II consisted of birds with completed wing moult but with still moulting body feathers, and group III consisted of birds that had completed wing moult and body moult. Size-corrected flight muscle, kidney mass, and pancreas mass differed significantly among the three groups. Flight muscle was heaviest in birds that were about to leave their wintering area (group III) compared with birds still in body moult (group II). Kidney and pancreas showed a pattern similar to each other, with the heaviest mass occurring in birds with moulting wing feathers (group I) and significantly reduced mass in birds that had completed wing moult (group II) or both wing and body moult (group III). Mass reductions of kidney and pancreas during the transition from moult to migration are considered to be related to the demands of moult, while increased flight muscle may be due to moult, migration, or both. Phenotypic mass changes of organs in birds occur during their migration, but they also occur during the transition between other phases of the annual cycle such as moult and migration and are not restricted to the flight muscle.  相似文献   

17.
Coastal seagrasses are declining at increasing rates worldwide, forcing herbivores previously reliant on these habitats to abandon them in search of alternative ways to fulfil their daily energy budgets. After two decades of declining seagrass abundance in Mariager Fjord, Denmark, the Svalbard breeding population of Light‐bellied Brent Geese Branta bernicla hrota has experienced substantial changes in habitat use at this traditional autumn staging area. Declines in seagrasses have caused birds to depend increasingly on Sea Lettuce Ulva lactuca in recent years, and forced birds into terrestrial habitats such as saltmarsh and winter wheat. In contrast to those birds exploiting aquatic habitats, birds relying on these new habitats showed higher energy expenditure and failed to balance their energy budget. Eelgrass (Zostera) was energetically superior to other food resources, with marine Ulva being second best. Predicted body mass development under two different scenarios indicate that present habitat use resulted in a midwinter body mass around 122 g lower than just 20 years ago, equivalent to c. 9.4% of Brent Goose body weight. Even after controlling for inter‐annual differences in thermoregulatory costs, the effect of changes in habitat use translated into a body mass reduction of c. 56 g, which could adversely affect survival and future reproduction. Flyway‐wide declines in Zostera abundance and further reductions in traditional habitats due to climate change give cause to reassess projected population trends and consequent management implications for the East Atlantic flyway population of Light‐bellied Brent Geese.  相似文献   

18.
Precise timing of life‐history transitions in predictably changing environments is hypothesized to aid in individual survival and reproductive success, by appropriately matching an animal's physiology and behavior with prevailing environmental conditions. Therefore, it is imperative for individuals to time energetically costly life‐history stages (i.e. reproduction) so they overlap with seasonal peaks in food abundance and quality. Female lifetime reproductive fitness is affected by several factors that influence energy balance, including arrival date, timing of egg production, and energetic condition. Therefore, any extra energetic costs during reproduction may negatively affect timing of egg production, and ultimately a female's fitness. For example, mounting an immunological response elicits a high energetic cost, and this transfer of resources towards cell and immune system maintenance could have direct negative effects on reproductive timing. In order to determine whether an immune challenge delays onset of breeding (i.e. egg production), we administered either a humoral immune challenge (keyhole limpet hemocyanin (KLH)) (treatment) or physiological saline (control) to free‐living female dark‐eyed juncos Junco hyemalis in the period immediately prior to egg‐laying (~4 weeks). We found that KLH‐injected females artificially delayed clutch initiation when compared to control females. These data help to refine our understanding of how free‐living birds allocate resources between reproduction and self‐maintenance processes during the critical pre‐laying period of the annual cycle.  相似文献   

19.
The relationship between body size and basal metabolic rate (BMR) in homeotherms has been treated in the literature primarily by comparison between species of mammals or birds. This paper focuses on the intraindividual changes in BMR when body mass (W) varies with different maintenance regimens. BMR varied in individual kestrels in proportion to W1.67, which is considerably steeper than the mass exponents for homomorphic change (0.667; Heusner, 1984) for interspecific comparison among all birds (0.677) or raptors (0.678), for interindividual comparison of kestrels on ad libitum maintenance regimens (0.786), and for mass proportionality (1.00). The circadian range of telemetered core temperature also varied more strongly with intraindividual than with interspecific (Aschoff, 1981a) variation in mass. This was due to reduced nocturnal core temperature at low-maintenance regimens, which was, however, insufficient to account for the excessive reduction in BMR. kidney lean mass at Carcass analysis of eight birds sacrificed revealed a disproportionate reduction in heart and kidney lean mass at low-maintenance regimens. We surmise that variation in BMR primarily reflects variation in these metabolically highly active tissues. This may account for positive correlations found between heart, kidney, and BMR residuals relative to interspecific allometric prediction, and between alpha and rho residuals, as expected on the basis of the constant excess of BMR during alpha above BMR during rho (Aschoff & Pohl, 1970a).  相似文献   

20.
1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia , following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study where the fuelling phase has been investigated in a bird migrating in captivity.
2. ME was very high, supporting earlier findings that migrating birds have among the highest intake rates known among homeotherms. ME was significantly higher the second day of fuelling, indicating a build-up of the capacity of the digestive tract during the first day of fuelling.
3. Further indications of an increase in size or activity level of metabolically active structures during fuelling come from the short-term variation in BMR, which increased over the 2-day fuelling period with more than 20%, and in almost direct proportion to body mass. However, mass-specific BMR decreased over the season.
4. The patterns of mass change, ME and BMR of our focal bird following two occasions of 12-h fasts were the same as after flights, indicating that fast and flight may involve similar physiological processes.
5. The relatively low ME the first day following a flight may be a contributing factor to the well-known pattern that migrating birds during stopover normally lose mass the first day of fuelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号