首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Q  He RR 《生理学报》2001,53(5):355-360
在麻醉Dahl盐敏感型(DS)高血压大鼠和Dahl盐抵抗型(DR)正常血压大鼠,研究了静注胍丁胺(agmatine,AGM)对血流动力学的影响.结果显示(1)静注AGM(1,10,20mg/kg)可剂量依赖性地降低DS和DR大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI.在DS高血压大鼠,MAP,LVP,±LVdp/dtmax和TPRI较DR正常血压大鼠下降幅度要大;而HR和CI在两种大鼠下降幅度无差异.需特别提出的是,DS高血压大鼠在静注高剂量AGM(20mg/kg)后,各项血流动力学指标出现先降低而后升高的现象,这一结果在DR正常血压大鼠并未出现.(2)预先静注咪唑啉受体(IR)和α2-肾上腺素能受体阻断剂(α2-AR)idazoxan(2.5mg/kg)可部分阻抑AGM的血流动力学效应.(3)预先静注α2-肾上腺素能受体阻断剂yohimbine(4mg/kg)同样可部分阻抑AGM的效应.(4)预先静注咪唑啉受体(I1)和α2-肾上腺素能受体阻断剂efaroxan(2.5mg/kg)则完全阻断AGM的血流动力学效应.以上结果表明,AGM可显著降低麻醉DR和DS大鼠的HR,MAP,LVP,±LVdp/dtmax,CI和TPRI;此效应似主要由I1-IR所介导,并有I2-IR和α2-AR参与.  相似文献   

2.
The pharmacological properties of various isolated smooth muscle preparations from the Dahl strain of hypertensive rats were studied. The Dahl salt-sensitive (DS) rat was allowed to develop hypertension by increasing the dietary sodium from 0.4 to 4.0 or 8.0%. The Dahl salt-resistant (DR) rat remained normotensive on the same diet. The preparations studied were the thoracic aorta, tail artery, portal vein, anococcygeus, and the perfused mesenteric bed. The noradrenaline mean effective doses (ED50) either in the absence or presence of cocaine, were similar for tissues obtained from hypertensive DS or normotensive DR. The reactivities of the isolated perfused mesenteric preparation to noradrenaline, serotonin, and phenylephrine were similar in DS and DR. The ED50 for the relaxing effects of papaverine in noradrenaline-precontracted aorta was similar for tissues from DS and DR and the profile for the washout of noradrenaline-precontracted aorta with Krebs (with or without papaverine) was also similar in DS and DR. The results of this study were compared with similar studies performed using other models of hypertension. It is concluded that vascular changes are unlikely to play a major role in the etiology of hypertension in the Dahl rat model of essential hypertension.  相似文献   

3.
Genomic libraries in lambda EMBL4 phage were constructed from both inbred Dahl salt-hypertension-sensitive (S) and inbred Dahl salt-hypertension-resistant (R) rats. Overlapping clones containing the renin genes were isolated from these libraries by screening with a renin cDNA probe. Clones were characterized by a combination of restriction mapping and Southern blot analysis. The results showed that the S-rat renin gene is remarkably different from the R-rat renin gene. The major differences are 1) a 1.2-kilobase (kb) insertion in the first intron of the S-gene which accounts for most of the restriction fragment length polymorphisms found in the renin genes between S and R strains, such as those generated with Bg/II [2.7 kb (S)/1.5 kb (R)], EcoRI [6.4 kb (S)/5.2 kb (R)], and HindIII [9.6 kb (S)/8.4 kb (R)]; 2) an additional HindIII site located at the 3' end of the R-gene which accounts for another HindIII restriction fragment length polymorphisms [25 kb (S)/22 kb, 3.4 kb (R)]; 3) two SmaI sites at the 5' flanking region of the first exon of the S-gene, whereas there is only one SmaI site in the corresponding region of the R-gene; and 4) three AvaI sites in the first intron of the S-gene in contrast to two AvaI sites in the same region of the R-gene These differences in the renin genes of Dahl rats might affect renin gene expression, which could account for the known strain differences in plasma and tissue renin activities. These structural studies provide a basis for genetic investigation into the relationship of the renin gene to blood pressure in Dahl rats.  相似文献   

4.
Circulating Na+/K+-ATPase inhibitors have been implicated in volume-expanded forms of hypertension. Inhibition of vascular smooth muscle cell Na+/K+-ATPase has been demonstrated to elevate intracellular Ca2+ levels and enhance contractility, thus providing a mechanism of raised peripheral resistance. In cells chronically subjected to Na+/K+-ATPase inhibition, however, new Na+/K+-ATPase molecules are synthesized, which then restore the intracellular milieu to preinsult conditions. Restoral of the preinsult intracellular milieu in vascular smooth muscle cells would then be expected to lead to the reduction of muscle cell contractility and peripheral resistance. Thus circulating Na+/K+-ATPase inhibitors may not be effective in eliciting chronic forms of hypertension unless the target cell "homeostatic response" is impaired. We demonstrate an apparent such impairment in Dahl salt-sensitive rats, a genetic model of salt-sensitive hypertension.  相似文献   

5.
The calcium antagonist, nifedipine, was intravenously administered in a cumulative fashion, from 0.5 to 12 mg/kg, to Dahl salt-sensitive (DS) and Dahl salt-resistant (DR) rats which had been maintained on a high (8.0%) or low (0.4%) salt (NaCl) diet. We observed, compared with the DR rats, dose-related and significant (P less than 0.001) falls in the systolic (SBP) (72 +/- 3 and 60 +/- 9%, respectively) and diastolic blood pressure (DBP) (67 +/- 2 and 62 +/- 6%) o the DS rats maintained either on the low (0.4%) or high (8.0%) salt diets. In contrast, nifedipine therapy comparatively produced only moderate changes in the SBP and DBP of the DR rats (36 +/- 12, 27 +/- 9, 31 +/- 10, and 30 +/- 11%, respectively). We hypothesize that this differential sensitivity of the DS and DR rats to the hypotensive action of nifedipine may reflect a significantly more important role for a high resting Ca2+ influx, through nifedipine sensitive channels, in the maintenance of the blood pressure of the DS rat.  相似文献   

6.
Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have tested the hypothesis that differences in vitamin D metabolism would render the Dahl S rat more susceptible than the Dahl R rat to the effects of a space flight model. Dahl female rats were tail suspended (hind limb unloaded) for 28 days, while fed a low salt (3 g/kg sodium chloride) diet. Plasma 25-OHD concentrations of S rats were significantly lower than that of R rats. Plasma 1,25-(OH)2D concentration was 50% lower in unloaded than in loaded S rats, but was unaffected in unloaded R rats. The left soleus muscle weight and breaking strength of the left femur (torsion test) were 50% and 25% lower in unloaded than in loaded S and R rats. The mineral content of the left femur, however, was significantly lower (by 11%) only in unloaded S rats. We conclude that female S rats are more vulnerable than female R rats to decreases in plasma 1,25-(OH)2D concentration and femur mineral content during hind limb unloading, but equally vulnerable to muscle atrophy and reduced breaking strength of the femur.  相似文献   

7.
We have searched for polymorphism of inducible nitric oxide synthase gene (Nos2 gene) in the Prague colony of salt-sensitive and salt-resistant Dahl/Rapp rats. Specific primers were used to confirm previously described Nos2 gene polymorphism because this gene was suggested to be a potential candidate gene for genetic hypertension. Phenotyping (blood pressure, organ weight, plasma lipids) have confirmed the data known from other colonies of Dahl/Rapp rats. However, in our colony we were not able to find any Nos2 gene polymorphism between salt-sensitive and salt-resistant rats, which was previously described in animals from Harlan colony. Moreover, the genetic homogeneity of our salt-sensitive and salt-resistant rats in terms of Nos2 gene was the same as in the original Brookhaven colony of Dahl rats. This is surprising because our colony has been established from breeding pairs kindly provided by Prof. J.P. Rapp more than 15 years ago. It seems that the polymorphism found in Harlan colony could be the result of previous contamination or genetic drift during the breeding conditions specific for this colony.  相似文献   

8.
NaCl reabsorption by the thick ascending limb of the loop of Henle (THAL) occurs via the apical Na-K-2Cl cotransporter, NKCC2. Overall, NKCC2 activity and NaCl reabsorption are regulated by the amount of NKCC2 at the apical surface, and also by phosphorylation. Dahl salt-sensitive rats (SS) exhibit higher NaCl reabsorption by the THAL compared with Dahl salt-resistant rats (SR), and they become hypertensive during high-salt (HS) intake. However, the effect of HS on THAL transport, surface NKCC2 expression, and NKCC2 NH(2)-terminus phosphorylation has not been studied. We hypothesized that HS enhances surface NKCC2 and its phosphorylation in THALs from Dahl SS. THAL suspensions were obtained from a group of SS and SR rats on normal-salt (NS) or HS intake. In SR rats THAL NaCl transport measured as furosemide-sensitive oxygen consumption was decreased by HS (-34%, P < 0.05). In contrast, HS did not affect THAL transport in SS rats. As expected, HS increased systolic blood pressure only in SS rats (Δ 23 ± 2 mmHg, P < 0.002) but not in SR rats (Δ 5 ± 3 mmHg). We next tested the effect of HS intake on apical surface NKCC2 and its NH(2)-terminus threonine phosphorylation (P-NKCC2) in SS and SR rats. HS intake decreased surface NKCC2 by 15 ± 2% (P < 0.03) in THALs from SR without affecting total NKCC2 or NH(2)-terminus P-NKCC2. In contrast, in SS rats HS intake increased surface NKCC2 by 54 ± 6% (P < 0.01) without affecting total NKCC2 expression or P-NKCC2. We conclude that HS intake causes different effects on surface NKCC2 in SS and SR rats. Our data suggest that enhanced surface NKCC2 in SS rats might contribute to enhanced NaCl reabsorption in SS rats during HS intake.  相似文献   

9.
The levels of atrial natriuretic factor (ANF) and the mRNA for ANF were measured in the left ventricles of Dahl salt-sensitive (S) and salt-resistant (R) rats. ANF and ANF mRNA were both much higher in ventricular tissue of newborn rats of both strains compared to young adults, which represents the normal developmental pattern. There was no strain difference between S and R when the rats were young (1.5 months of age), but in older animals (8.5 months of age), when S rats were markedly hypertensive, there was a 5- to 10-fold increase in both left ventricular ANF and left ventricular ANF mRNA in S, but not R, rats. Atrial ANF mRNA was not similarly increased in hypertensive S rats. The ANF levels present in ventricles could not be accounted for by contamination with plasma ANF. Moreover, HPLC analysis of the forms of ANF in ventricles of newborn and hypertensive S rats showed that immunoreactive ANF in ventricles was present mainly in the same precursor form found in atria and not the shorter peptide form found in plasma. Northern blot analysis showed that ANF mRNA for atria and ventricles were the same size. It is concluded that in the S rat the heart left ventricle responds to hypertension by increasing production and storage of ANF.  相似文献   

10.
The binding of atrial natriuretic factor (ANF) was studied in kidney membranes of inbred salt-sensitive (S) and inbred salt-resistant (R) rats on high or low salt diet. Important differences between strains were seen in the rate of dissociation of ANF from its renal receptor(s) and this was dependent on salt (NaCl) intake. On low salt diet ANF dissociation rates were similar between strains. R rats responded to high salt diet with a decrease in the rate of ANF dissociation from its renal receptor, but ANF dissociation in S rats was not altered by dietary salt. Receptor density was similar between strains. Basal cGMP production was slightly higher for renal membranes of S rats, but ANF stimulation of cGMP production was similar between strains and was not influenced by salt intake in either strain. Since strain-related salt-induced changes in ANF-receptor binding kinetics were not reflected in any strain-related salt-induced changes in ANF stimulated cGMP production, it is tentatively concluded that the ANF receptor likely to be different between S and R strains is the ANF receptor not linked to cGMP production.  相似文献   

11.
Angiotensin II has previously been reported to have in vivo and in vitro cardiac hypertrophic effects. We used the salt-sensitive Dahl rat genetic strain to separate mechanical (pressure overload) vs. hormonal (renin-angiotensin system) input in cardiac hypertrophy. Blood pressure was significantly increased and left ventricular hypertrophy, as indexed by LV/BW ratios, was present at 7 and 15 days in rats receiving 4% and 8% NaCl compared to the 1% controls. There was no effect of the angiotensin converting enzyme inhibitor, enalapril maleate, on lowering the blood pressure in 8% NaCl-treated animals, however, there was a significant reduction in LV/BW ratio in 8% NaCl-treated animals that received this drug. Left ventricular angiotensinogen mRNA activity was significantly reduced in rats receiving 4% and 8% NaCl. In this model of hypertension the cardiac hypertrophy which develops is largely dependent on mechanical forces though there remains a significant contribution to this process from either circulating or localized angiotensin II production. Regulation of angiotensinogen gene expression in the hypertrophied left ventricle suggests that volume and electrolyte control of angiotensinogen gene expression in the heart and/or hereditary factors are predominant in the control of regulation of this gene in the left ventricle of Dahl rats.  相似文献   

12.
It is recognized that the development of hypertension in Dahl salt-sensitive (DS) rats as compared to Dahl salt-resistant (DR) rats is dependent on the addition of a high percentage of sodium chloride, often 8% to the diet. In this work, blood systolic pressure and the concentrations of many elements in different tissues of DS and DR rats were measured. However, to distinguish the modifications linked to the strain from the modifications owing to excess of sodium intake, no additional Na was included in the diet in all our experiments. Without any addition of sodium chloride to the diet, a statistically significant increase of the systolic blood pressure of DS rats (152±10 mmHg) in comparison to DR rats (131 +/? 3 mmHg) was observed. The analysis of the concentrations of many elements in different tissues showed no major modifications of sodium concentrations in DS rats as compared to DR rats, but a decrease of calcium in plasma (?9%), brain (?20%), and heart (?7%) and of magnesium in plasma (?13%), kidney (?11%), and bone (?7%). In conclusion, an increased intake of Na is not necessary to obtain a higher systolic blood pressure in DS rats compared to DR rats. Since we did not find noticeable modifications of Na concentration in tissues but modifications of Ca and Mg, we suggest that an alteration of the homeostasis of these two elements may be involved in the development of the hypertension in DS rats.  相似文献   

13.
Postmenopausal women (PMW) are at greater risk for salt-sensitive hypertension and insulin resistance than premenopausal women. Peroxisome-proliferator-activated receptor-gamma (PPARγ) agonists reduce blood pressure (BP) and insulin resistance in humans. As in PMW, ovariectomy (OVX) increases salt sensitivity of BP and body weight in Dahl salt-sensitive (DS) rats. This study addressed whether rosiglitazone (ROSI), a PPARγ agonist, attenuates salt-sensitive hypertension in intact (INT) and OVX DS rats, and if so, whether insulin resistance, nitric oxide (NO), oxidative stress, and/or renal inflammation were contributing mediators. Telemetric BP was similar in OVX and INT on low salt diet (0.3% NaCl), but was higher in OVX than INT on high salt (8% NaCl). ROSI reduced BP in OVX and INT on both low and high salt diet, but only attenuated salt sensitivity of BP in OVX. Nitrate/nitrite excretion (NOx; index of NO) was similar in INT and OVX on low salt diet, and ROSI increased NOx in both groups. High salt diet increased NOx in all groups but ROSI only increased NOx in OVX rats. OVX females exhibited insulin resistance, increases in body weight, plasma leptin, cholesterol, numbers of renal cortical macrophages, and renal MCP-1 and osteopontin mRNA expression compared to INT. ROSI reduced cholesterol and macrophage infiltration in OVX, but not INT. In summary, PPARγ activation reduces BP in INT and OVX females, but attenuates the salt sensitivity of BP in OVX only, likely due to increases in NO and in part to reductions in renal resident macrophages and inflammation.  相似文献   

14.
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-kappaB and upregulation of TNF-alpha related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 +/- 3.7 vs. 109.4 +/- 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 +/- 2.6 vs. 6.1 +/- 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-kappaB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group (P = 0.007). ELISA indicated that renal protein levels of TNF-alpha, but not IL-6, interferon-gamma, and CCL28, were significantly higher in the HS than the LS group (2.3 +/- 0.8 vs. 0.7 +/- 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-alpha were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-kappaB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-kappaB and upregulation of TNF-alpha are the important renal mechanisms linking proinflammatory response to SS hypertension.  相似文献   

15.
The roles of oxidative stress and renal superoxide dismutase (SOD) levels and their association with renal damage were studied in Dahl salt-sensitive (S) and salt-resistant (R)/Rapp strain rats during changes in Na intake. After 3 wk of a high (8%)-Na diet in S rats, renal medullary Cu/Zn SOD was 56% lower and Mn SOD was 81% lower than in R high Na-fed rats. After 1, 2, and 3 wk of high Na, urinary excretion of F(2)-isoprostanes, an index of oxidative stress, was significantly greater in S rats compared with R rats. Plasma F(2)-isoprostane concentration increased in the 2-wk S high Na-fed group. After 3 wk, renal cortical and medullary superoxide production was significantly increased in Dahl S rats on high Na intake, and urinary protein excretion, an index of renal damage, was 273 +/- 32 mg/d in S high Na-fed rats and 35 +/- 4 mg/d in R high Na-fed rats (P < 0.05). In conclusion, salt-sensitive hypertension in the S rat is accompanied by marked decreases in renal medullary SOD and greater renal oxidative stress and renal damage than in R rats.  相似文献   

16.
Although it is well established that the renal endothelin (ET-1) system plays an important role in regulating sodium excretion and blood pressure through activation of renal medullary ET(B) receptors, the role of this system in Dahl salt-sensitive (DS) hypertension is unclear. The purpose of this study was to determine whether the DS rat has abnormalities in the renal medullary endothelin system when maintained on a high sodium intake. The data indicate that Dahl salt-resistant rats (DR) on a high-salt diet had a six-fold higher urinary endothelin excretion than in the DR rats with low Na(+) intake (17.8 ± 4 pg/day vs. 112 ± 44 pg/day). In sharp contrast, urinary endothelin levels increased only twofold in DS rats in response to a high Na(+) intake (13 ± 2 pg/day vs. 29.8 ± 5.5 pg/day). Medullary endothelin concentration in DS rats on a high-Na(+) diet was also significantly lower than DR rats on a high-Na(+) diet (31 ± 2.8 pg/mg vs. 70.9 ± 5 pg/mg). Furthermore, DS rats had a significant reduction in medullary ET(B) receptor expression compared with DR rats while on a high-Na(+) diet. Finally, chronic infusion of ET-1 directly into the renal medulla blunted Dahl salt-sensitive hypertension. These data indicate that a decrease in medullary production of ET-1 in the DS rat could play an important role in the development of salt-sensitive hypertension observed in the DS rat.  相似文献   

17.
18.
N R Nichols  D F Obert  W J Meyer 《Life sciences》1985,36(17):1653-1660
The Dahl salt-resistant substrain of Sprague-Dawley rats represents a uniform population of animals that are resistant to salt and mineralocorticoid induced hypertension. Aldosterone binding in the aortae of these rats is contrasted to that of age- and sex-matched rats of the Dahl salt-susceptible strain in an effort to identify a mechanism for resistance to salt induced hypertension. Cultured smooth muscle cells of both substrains contain two classes of aldosterone binding sites: corticoid receptor I with high affinity and low capacity, and corticoid receptor II with low affinity and high capacity. No differences were found between the two substrains in the affinities or binding capacities of these receptors. Both groups of Sprague-Dawley rats had a significantly higher corticoid receptor I affinity than the salt resistant Fischer 344 rats, a strain with a two-fold lower affinity than salt sensitive strains. These results indicate that an intrinsic defect in mineralocorticoid binding in aortic smooth muscle cells could not account for the resistance to salt and mineralocorticoid induced hypertension seen in Sprague-Dawley rats and that the biochemical abnormality underlying salt resistance is likely to be different from that of Fischer 344 rats.  相似文献   

19.
Dahl selectively bred rats for susceptibility (S strain) or resistance (R strain) to the hypertensive effect of high salt (NaCl) diet. Pituitary glands of R rats accumulate large amounts of four unique proteins not seen in S rats. These proteins were called R1, R2, R3, and R4 in order of decreasing electrophoretic mobility. Albumin, R4, R2, and R1 all bound to an affinity column for albumin (Cibacron blue 3G-A dye coupled to agarose) and were eluted in that order by a KSCN gradient. It was shown by crossed immunoelectrophoresis that R1 and R2 cross-react with plasma albumin. Peptide maps or tryptic digest of R1 and albumin showed that the majority of peptides generated were identical. It was not possible to incorporate labeled amino acid into albumin or the albumin-like R proteins with pituitary incubates, indicating that albumin-like proteins were not synthesized de novo by pituitary glands. R rat pituitary glands showed much greater protease (arginine esterase) activity than did S. This suggests that R proteins are formed locally in the pituitary gland of R proteins are formed locally in the pituitary gland of R rats by cleavabe of specific peptide bonds in albumin. The function of these endogenous albumin fragments is unknown, but albumin fragments produced in vitro by other investigators are known to potentiate bradykinin, a hypotensive peptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号