首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
It has been widely known that slow metabolism induced by calorie restriction (CR) can extend the life span of model organisms though the underlying mechanism remains poorly understood. Accumulated evidence suggests that SIRT1 may be actively involved in CR-induced signaling pathways. As a putative activator of SIRT1, resveratrol, known for the French paradox, can partially mimic the physiological effects of CR. While the deacetylase activity of SIRT1 is important for the beneficial effects of resveratrol, resveratrol-induced SIRT1 activation has recently been challenged by the observations that resveratrol could not induce SIRT1-mediated deacetylation of native substrates in vitro. To resolve the discrepancy of resveratrol-induced activation of SIRT1 deacetylase activity between the in vitro and in vivo assays, a model of indirect SIRT1 activation by resveratrol is proposed. In this review, we will discuss the emerging roles of SIRT1 and resveratrol in CR and focus on debate over the links between SIRT1 and resveratrol.  相似文献   

2.
3.
A series of 1,3,4-thiadiazole-containing hydroxamic acids, in accord with the common pharmacophore of histone deacetylase (HDAC) inhibitors (a Zn2+ binding moiety–a linker–a surface recognition motif), was identified as submicromolar HDAC inhibitors by our group. In this study, we continued our efforts to develop 1,3,4-thiadiazole bearing hydroxamate analogues by modifying the surface recognition motif. We found that 1,3,4-thiadiazoles having a heteroaromatic substituent showed better HDAC inhibitory activity in enzymatic assay and higher antiproliferative potency in cellular assay compared to SAHA.  相似文献   

4.
The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (p<0.03). The NOS inhibitor L-NAME blunted resveratrol-stimulated NO bioavailability by 96±11% (p<0.03). The superoxide scavenger tempol had no effect. Resveratrol elevated Cai from 48±7 to 135±24 nM (p<0.01) in single tubules. In Ca2+-free media, the resveratrol-induced increase in NO was blunted by 60±20% (p<0.05) and the rise in Cai reduced by 80%. Calmodulin inhibition prevented the resveratrol-induced increase in NO (p<0.002). AMPK inhibition had no effect. Resveratrol did not increase SIRT1 activity. We conclude that resveratrol increases NO production in thick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD+-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H2O2 showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.  相似文献   

6.
Cardiomyopathy is the main cause of death in Duchenne muscular dystrophy. Here, we show that oral administration of resveratrol, which leads to activation of an NAD+-dependent protein deacetylase SIRT1, suppresses cardiac hypertrophy and fibrosis and restores cardiac diastolic function in dystrophin-deficient mdx mice. The pro-hypertrophic co-activator p300 protein but not p300 mRNA was up-regulated in the mdx heart, and resveratrol administration down-regulated the p300 protein level. In cultured cardiomyocytes, cardiomyocyte hypertrophy induced by the α1-agonist phenylephrine was inhibited by the overexpression of SIRT1 as well as resveratrol, both of which down-regulated p300 protein levels but not p300 mRNA levels. In addition, activation of atrial natriuretic peptide promoter by p300 was inhibited by SIRT1. We found that SIRT1 induced p300 down-regulation via the ubiquitin-proteasome pathway by deacetylation of lysine residues for ubiquitination. These findings indicate the pathological significance of p300 up-regulation in the dystrophic heart and indicate that SIRT1 activation has therapeutic potential for dystrophic cardiomyopathy.  相似文献   

7.
Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn2+ binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.  相似文献   

8.
9.
10.
Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.  相似文献   

11.
The aging process is perceived as resulting from a combination of intrinsic factors such as changes in intracellular signaling and extrinsic factors, most notably environmental stressors. In skin, the relationship between intrinsic changes and keratinocyte function is not clearly understood. Previously, we found that increasing the activity of AMP-activated protein kinase (AMPK) suppressed senescence in hydrogen peroxide (H2O2)-treated human primary keratinocytes, a model of oxidative stress-induced cellular aging. Using this model in the present study, we observed that resveratrol, an agent that increases the activities of both AMPK and sirtuins, ameliorated two age-associated phenotypes: cellular senescence and proliferative dysfunction. In addition, we found that treatment of keratinocytes with Ex527, a specific inhibitor of sirtuin 1 (SIRT1), attenuated the ability of resveratrol to suppress senescence. In keeping with the latter observation, we noted that compared to non-senescent keratinocytes, senescent cells lacked SIRT1. In addition to these effects on H2O2-induced senescence, resveratrol also prevented the H2O2-induced decrease in proliferation (as indicated by 3H-thymidine incorporation) in the presence of insulin. This effect was abrogated by inhibition of AMPK but not SIRT1. Compared to endothelium, we found that human keratinocytes expressed relatively high levels of Forkhead box O3 (FOXO3), a downstream target of both AMPK and SIRT1. Treatment of keratinocytes with resveratrol transactivated FOXO3 and increased the expression of its target genes including catalase. Resveratrol’s effects on both senescence and proliferation disappeared when FOXO3 was knocked down. Finally, we performed an exploratory study which showed that skin from humans over 50 years old had lower AMPK activity than skin from individuals under age 20. Collectively, these findings suggest that the effects of resveratrol on keratinocyte senescence and proliferation are regulated by the AMPK-FOXO3 pathway and in some situations, but not all, by SIRT1.  相似文献   

12.
The natural polyphenolic compound resveratrol (3,4,5-trihydroxy-trans-stilbene) has broad spectrum health beneficial activities including antioxidant, anti-inflammatory, anti-aging, anti-cancer, cardioprotective, and neuroprotective effects. Remarkably, resveratrol also induces apoptosis and cellular senescence in primary and cancer cells. Resveratrol’s anti-aging effects both in vitro and in vivo attributed to activation of a (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. In mammals seven members (SIRT1-7) of sirtuin family have been identified. Among those, SIRT1 is the most extensively studied with perceptive effects on mammalian physiology and suppression of the diseases of aging. Yet no data has specified the role of sirtuins, under conditions where resveratrol treatment induces senescence. Current study was undertaken to investigate the effects of resveratrol in human primary dermal fibroblasts (BJ) and to clarify the role of sirtuin family members in particular SIRT1 and SIRT2 that are known to be involved in cellular stress responses and cell cycle, respectively. Here, we show that resveratrol decreases proliferation of BJ cells in a time and dose dependent manner. In addition the increase in senescence associated β-galactosidase (SA-β-gal) activity and methylated H3K9-me indicate the induction of premature senescence. A significant increase in phosphorylation of γ-H2AX, a surrogate of DNA double strand breaks, as well as in levels of p53, p21CIP1 and p16INK4A is also detected. Interestingly, at concentrations where resveratrol induced premature senescence we show a significant decrease in SIRT1 and SIRT2 levels by Western Blot and quantitative RT-PCR analysis. Conversely inhibition of SIRT1 and SIRT2 via siRNA or sirtinol treatment also induced senescence in BJ fibroblasts associated with increased SA-β-gal activity, γ-H2AX phosphorylation and p53, p21CIP1 and p16INK4A levels. Interestingly DNA damaging agent doxorubicin also induced senescence in BJ fibroblasts associated with decreased SIRT1/2 levels. In conclusion our data reveal that resveratrol induced premature senescence is associated with SIRT1 and SIRT2 down regulation in human dermal fibroblasts. Here we suggest that the concomitant decline in SIRT1/2 expression in response to resveratrol treatment may be a cause for induction of senescence, which is most likely mediated by a regulatory mechanism activated by DNA damage response.  相似文献   

13.
SIRT1 is the closest mammalian homologue of enzymes that extend life in lower organisms. Its role in mammals is incompletely understood, but includes modulation of at least 34 distinct targets through its nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. Recent experiments using small molecule activators and genetically engineered mice have provided new insight into the role of this enzyme in mammalian biology and helped to highlight some of the potentially relevant targets. The most widely employed activator is resveratrol, a small polyphenol that improves insulin sensitivity and vascular function, boosts endurance, inhibits tumor formation, and ameliorates the early mortality associated with obesity in mice. Many of these effects are consistent with modulation of SIRT1 targets, such as PGC1α and NFκB, however, resveratrol can also activate AMPK, inhibit cyclooxygenases, and influence a variety of other enzymes. A novel activator, SRT1720, as well as various methods to manipulate NAD+ metabolism, are emerging as alternative methods to increase SIRT1 activity, and in many cases recapitulate effects of resveratrol. At present, further studies are needed to more directly test the role of SIRT1 in mediating beneficial effects of resveratrol, to evaluate other strategies for SIRT1 activation, and to confirm the specific targets of SIRT1 that are relevant in vivo. These efforts are especially important in light of the fact that SIRT1 activators are entering clinical trials in humans, and “nutraceutical” formulations containing resveratrol are already widely available.  相似文献   

14.
We examined in HepG2 cells whether glucose-induced changes in AMP-activated protein kinase (AMPK) activity could be mediated by SIRT1, an NAD+-dependent histone/protein deacetylase that has been linked to the increase in longevity caused by caloric restriction. Incubation with 25 vs. 5 mM glucose for 6 h concurrently diminished the phosphorylation of AMPK (Thr 172) and ACC (Ser 79), increased lactate release, and decreased the abundance and activity of SIRT1. In contrast, incubation with pyruvate (0.1 and 1 mM) for 2 h increased AMPK phosphorylation and SIRT1 abundance and activity. The putative SIRT1 activators resveratrol and quercetin also increased AMPK phosphorylation. None of the tested compounds (low or high glucose, pyruvate, and resveratrol) significantly altered the AMP/ATP ratio. Collectively, these findings raise the possibility that glucose-induced changes in AMPK are linked to alterations in SIRT1 abundance and activity and possibly cellular redox state.  相似文献   

15.
16.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD+-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol''s enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.  相似文献   

17.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

18.
We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD+-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD+ (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD+ and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD+, and point to a new pathway for diabetes therapy.  相似文献   

19.
Apurinic/Apyrmidinic Endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a reductant which is important for vascular homeostasis. SIRTUIN1 (SIRT1) is a lysine deacetylase that also promotes endothelium-dependent vasorelaxation. We asked if APE1/Ref-1 governs the redox state and activity of SIRT1, and whether SIRT1 mediates the effect of APE1/Ref-1 on endothelium-dependent vascular function. APE1/Ref-1 maintains sulfhydryl (thiol) groups of cysteine residues in SIRT1 in the reduced form and promotes endothelial SIRT1 activity. APE1/Ref-1 stimulates SIRT1 activity by targeting highly conserved vicinal thiols 371 and 374 which form a zinc tetra-thiolate motif in the deacetylase domain of SIRT1. Cysteine residues in the N-terminal redox domain of APE1/Ref-1 are essential for reducing SIRT1 and stimulating its activity. APE1/Ref-1 protects endothelial SIRT1 from hydrogen peroxide-induced oxidation of sulfhydryls and from inactivation. APE1/Ref-1 also promotes lysine deacetylation of the SIRT1 target endothelial nitric oxide synthase (eNOS). SIRT1 mutated at cysteines 371 and 374, which renders it non-reducible by APE1/Ref-1, prevents lysine deacetylation of eNOS by APE1/Ref-1. SIRT1 free thiol (reduced sulfhydryl) content and deacetylase activity are diminished in all examined tissues of APE1/Ref-1+/− mice, including the vasculature. Overexpression of SIRT1 in aortas of APE1/Ref-1+/− mice restores endothelium-dependent vasorelaxation and bioavailable nitric oxide (NO) to levels similar to those observed in wild-type mice. Thus, APE1/Ref-1, by maintaining functionally important cysteine sulfhydryls in SIRT1 in the reduced form, promotes endothelial SIRT1 activity. This reductive activation of endothelial SIRT1 by APE1/Ref-1 mediates the effect of APE1/Ref-1 on eNOS acetylation, promoting endothelium-derived NO and endothelium-dependent vasorelaxation.  相似文献   

20.
SIRT6 is a deacetylase of histone H3 and inhibitors of SIRT6 have been thought as potential agents for treatment of diabetes. Herein we report the discovery of a series of new SIRT6 inhibitors containing the skeleton 1-phenylpiperazine. Among them, compound 5-(4-methylpiperazin-1-yl)-2-nitroaniline (6d) is the most potent one, which showed an IC50 value of 4.93 μM against SIRT6 in the Fluor de Lys (FDL) assay. It displayed KD values of 9.76 μM and 10 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In selectivity assay, 6d showed no activity against other members of the HDAC family (SIRT1-3 and HDAC1-11) at concentrations up to 200 µM. In a mouse model of type 2 diabetes, 6d could significantly increase the level of glucose transporter GLUT-1, thereby reducing blood glucose. Overall, this study provides a promising lead compound for subsequent drug discovery targeting SIRT6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号