首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated the manner in which rIL-2 induced effectors in vitro (LAK cells), which, like NK cells, lyse targets nonspecifically and discriminate nonself, and how H-2 as the self-marker affects the LAK cell killing mechanism. NK cells showed an appreciably higher killing activity to B16 melanoma H-2- cells than to H-2+ cells. In contrast, LAK cells lysed more efficiently to H-2+ cells. The in vivo experiments showed that the NK cells prevented pulmonary metastasis of B16 H-2- cells in the normal syngeneic host, whereas the transferred LAK cells had a preferential inhibitory effect on the pulmonary metastasis of B16 H-2+ cells in the immunodeficient syngeneic hosts. Taken together, these results show that the H-2-encoded or H-2-associated molecules contribute to the triggering signal in the lysis by LAK cells, whereas the NK cells recognize the reduced self H-2 expression on the targets, thereby contributing to a trigger of the lysis.  相似文献   

3.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

4.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

5.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

6.
The response of H-Y-specific TCR-transgenic CD8(+) T cells to Ag is characterized by poor proliferation, cytolytic activity, and IFN-gamma secretion. IFN-gamma secretion, but not cytotoxic function, can be rescued by the B7.1 molecule, suggesting that costimulation can selectively enhance some, but not all, effector CD8(+) T cell responses. Although the H-Y epitope binds H-2D(b) relatively less well than some other epitopes, it can induce potent CTL responses in nontransgenic mice, suggesting that the observed poor responsiveness of transgenic CD8(+) T cells cannot be ascribed to the epitope itself. Previously reported reactivity of this TCR to H-2A(b) is also not the cause of the poor responsiveness of the H-Y-specific CD8(+) T cells, as H-Y-specific CD8(+) T cells obtained from genetic backgrounds lacking H-2A(b) also responded poorly. Rather, reducing the levels of H-2(b) class I molecules by breeding the mice to (C57BL/6 x B10.D2)F(1) or TAP1(+/-) backgrounds partially restored cytotoxic activity and enhanced proliferative responses. These findings demonstrate that the self MHC class I gene dosage may regulate the extent of CD8(+) T cell responsiveness to Ag.  相似文献   

7.
Recently, it has been shown that human beta(2)-microglobulin (h-beta(2)m) blocks the association between the NK cell inhibitory receptor Ly49C and H-2K(b). Given this finding, we therefore sought to assess the immunobiology of NK cells derived from C57BL/6 (H-2(b)) mice expressing exclusively h-beta(2)m. Initial analysis revealed that the Ly49C expression profile of NK cells from h-beta(2)m(+) mice was modified, despite the fact that H-2K(b) expression was normal in these mice. Moreover, the NK cells were not anergic in that IL-2 treatment of h-beta(2)m(+) NK cells in vitro enabled efficient lysis of prototypic tumor cell lines as well as of syngeneic h-beta(2)m(+) lymphoblasts. This loss of self-tolerance appeared to correlate with the activation status of h-beta(2)m(+) NK cells because quiescent h-beta(2)m(+) transplant recipients maintained h-beta(2)m(+) grafts but polyinosine:polycytidylic acid-treated recipients acutely rejected h-beta(2)m(+) grafts. NK cell reactivity toward h-beta(2)m(+) targets was attributed to defective Ly49C interactions with h-beta(2)m:H-2K(b) molecules. With regard to NK cell regulatory mechanisms, we observed that h-beta(2)m:H-2K(b) complexes in the cis-configuration were inefficient at regulating Ly49C and, furthermore, that receptor-mediated uptake of h-beta(2)m:H-2K(b) by Ly49C was impaired compared with uptake of mouse beta(2)m:H-2K(b). Thus, we conclude that transgenic expression of h-beta(2)m alters self-MHC class I in such a way that it modulates the NK cell phenotype and interferes with regulatory mechanisms, which in turn causes in vitro-expanded and polyinosine:polycytidylic acid-activated NK cells to be partially self-reactive similar to what is seen with NK cells derived from MHC class I-deficient mice.  相似文献   

8.
Current peptide-based immunotherapies for treatment of model cancers target tumor Ags bound by the classical MHC class I (class Ia) molecules. The extensive polymorphism of class Ia loci greatly limits the effectiveness of these approaches. We demonstrate in this study that the murine nonpolymorphic, nonclassical MHC class I (class Ib) molecule Q9 (Qa-2) promotes potent immune responses against multiple syngeneic tumors. We have previously shown that ectopic expression of Q9 on the surface of class Ia-negative B78H1 melanoma led to efficient CTL-mediated rejection of this tumor. In this study, we report that surface-expressed Q9 on 3LLA9F1 Lewis lung carcinoma and RMA T cell lymphoma also induces potent antitumor CTL responses. Importantly, CTL harvested from animals surviving the initial challenge with Q9-positive 3LLA9F1, RMA, or B78H1 tumors recognized and killed their cognate tumors as well as the other cancer lines. Furthermore, immunization with Q9-expressing 3LLA9F1 or RMA tumor cells established immunological memory that enhanced protection against subsequent challenge with a weakly immunogenic, Q9-bearing melanoma variant. Collectively, the generation of cross-reactive CTL capable of eliminating multiple disparate Q9-expressing tumors suggests that this nonpolymorphic MHC class I molecule serves as a restriction element for a shared tumor Ag(s) common to lung carcinoma, T cell lymphoma, and melanoma.  相似文献   

9.
TCR transgenic 6C5 T cells recognize an insulin B chain epitope presented by the nonclassical class I MHC molecule, Qa-1(b). Positive selection of these T cells was shown previously to require Qa-1(b). Despite dedicated specificity for Qa-1(b), evidence presented in the current study indicates that 6C5 T cells can cross-recognize a classical class I molecule. Clonal deletion was observed unexpectedly in 6C5.H-2(bxq) mice, which do not express I-E MHC class II molecules and thus should not be subject to superantigen-mediated negative selection. 6C5 T cells were observed to respond in vivo and in vitro to spleen cells from allogeneic H-2(q) mice, and specificity was mapped to D(q). Evidence was obtained for direct recognition of D(q), rather than indirect presentation of a D(q)-derived peptide presented by Qa-1(b). Polyclonal CD8(+) T cells from class Ia-deficient K(b)D(b-/-) mice reacted in vitro to allogeneic spleen cells with an apparent frequency comparable to conventional class Ia-restricted T cells. Our results provide a clear example of a Qa-1-specific TCR that can cross-react with a class Ia molecule and evidence supporting the idea that this may be a common property of T cells selected by class Ib molecules.  相似文献   

10.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

11.
Wild-type mice immunized with MART-1 melanoma Ag-engineered dendritic cells (DC) generate strong Ag-specific immunity that has an absolute requirement for both CD8(+) and CD4(+) T cells. DC administration to CD8 alpha knockout mice displayed unexpectedly enhanced levels of protection to tumor challenge despite this deficiency in CD8(+) T cells and the inability to mount MHC class I-restricted immune responses. This model has the following features: 1) antitumor protection is Ag independent; 2) had an absolute requirement for CD4(+) and NK1.1(+) cells; 3) CD4(+) splenocytes are responsible for cytokine production; 4) lytic cells in microcytotoxicity assays express NK, but lack T cell markers (NK1.1(+) alpha beta TCR(-) CD3(-)); and 5) the lytic phenotype can be transferred to naive CD8 alpha knockout mice by NK1.1(+) splenocytes. Elucidation of the signaling events that activate these effective cytotoxic cells and the putative suppressive mechanisms in a wild-type environment may provide means to enhance the clinical activity of DC-based approaches.  相似文献   

12.
NK cells and CD8+ T cells bind MHC-I molecules using distinct topological interactions. Specifically, murine NK inhibitory receptors bind MHC-I molecules at both the MHC-I H chain regions and beta2-microglobulin (beta2m) while TCR engages MHC-I molecules at a region defined solely by the class I H chain and bound peptide. As such, alterations in beta2m are not predicted to influence functional recognition of MHC-I by TCR. We have tested this hypothesis by assessing the capability of xenogeneic beta2m to modify the interaction between TCR and MHC-I. Using a human beta2m-transgenic C57BL/6 mouse model, we show that human beta2m supports formation and expression of H-2K(b) and peptide:H-2K(b) complexes at levels nearly equivalent to those in wild-type mice. Despite this finding, the frequencies of CD8+ single-positive thymocytes in the thymus and mature CD8+ T cells in the periphery were significantly reduced and the TCR Vbeta repertoire of peripheral CD8+ T cells was skewed in the human beta2m-transgenic mice. Furthermore, the ability of mouse beta2m-restricted CTL to functionally recognize human beta2m+ target cells was diminished compared with their ability to recognize mouse beta2m+ target cells. Finally, we provide evidence that this effect is achieved through subtle conformational changes occurring in the distal, peptide-binding region of the MHC-I molecule. Our results indicate that alterations in beta2m influence the ability of TCR to engage MHC-I during normal T cell physiology.  相似文献   

13.
Ly49 and CD94/NKG2 inhibitory receptors are predominantly expressed on murine NK cells, but they are also expressed on a subpopulation of peripheral CD8 memory TCR alphabeta lymphocytes. In this study we demonstrate that Ly49E and CD94/NKG2 receptors are expressed on mature TCR Vgamma3(+) cells in the fetal thymus. Expression correlated with a memory phenotype, such as expression of CD44, 2B4, and IL-2Rbeta (CD122), and absence of IL-2Ralpha (CD25) expression. No expression of Ly49A, C, D, G2, or I receptors was observed. This phenotype is similar to that of fetal thymic NK cells. Skin-located Vgamma3 T cells, the progeny of fetal thymic Vgamma3 cells, also expressed CD94/NKG2 and Ly49E but not the other members of the Ly49 family. The development and survival of Ly49E(+) or CD94/NKG2(+) Vgamma3 T lymphocytes was not dependent upon expression of MHC class I molecules. The cytotoxicity of TCR Vgamma3 cells was inhibited when Qdm, the ligand for CD94/NKG2, was presented by Qa1(b)-transfected target cells. Also, upon cross-linking of CD94/NKG2 with mAb 3S9, TCR Vgamma3 thymocytes were prevented from killing FcgammaR(+) P815 target cells. These effects were most pronounced in the CD94/NKG2(high) subpopulation as compared with the CD94/NKG2(low) subpopulation of Vgamma3 cells. Our data demonstrate that Vgamma3 T cells expressing inhibitory Ly49E and CD94/NKG2 receptors are mature and display a memory phenotype, and that CD94/NKG2 functions as an inhibitory receptor on these T lymphocytes.  相似文献   

14.
The Ly49 family of genes encode NK cell receptors that bind class I MHC Ags and transmit negative signals if the cytoplasmic domains have immunoregulatory tyrosine-based inhibitory motifs (ITIMs). 5E6 mAbs recognize Ly49C and Ly49I receptors and depletion of 5E6+ NK cells prevents rejection of allogeneic or parental-strain H2d bone marrow cell (BMC) grafts. To determine the function of the Ly49I gene in the rejection of BMC grafts, we transfected fertilized eggs of FVB mice with a vector containing DNA for B6 strain Ly49I (Ly49IB6). Ly49IB6 is ITIM+ and is recognized by 5E6 as well as Ly49I-specific 8H7 mAbs. Normal FVB H2q mice reject H2b but not H2d BMC allografts, and the rejection of H2b BMC was inhibited partially by anti-NK1.1 and completely by anti-asialo GM1, but not by anti-CD8, Abs. In FVB mice, NK1.1 is expressed on only 60% NK cells. FVB. Ly49IB6 hosts failed to reject H2d or H2b BMC, but did reject class I-deficient TAP-1-/- BMC, indicating that NK cells were functional. Nondepleting doses of anti-Ly49I Abs reversed the acceptance of H2b BMC by FVB.Ly49IB6 mice. FVB.Ly49IB6+/- mice were crossed and back-crossed with 129 mice-H2b, 5E6-, poor responders to H2d BMC grafts. While transgene-negative H2b/q F1 or first-generation back-crossed mice rejected H2b marrow grafts (hybrid resistance), transgene-positive mice did not. Thus B6 strain Ly49I receptors transmit inhibitory signals from H2b MHC class I molecules. Moreover, Ly49IB6 has no positive influence on the rejection of H2d allografts.  相似文献   

15.
The sensitivity of H-2b-high and H-2b-low variants of BL6 melanoma to the cytotoxic action of NK and lymphokine-activated killer cells was investigated. BL6 mouse melanoma cells lack detectable H-2Kb and had low levels of expression of H-2Db Ag. The BL6T2 variant cells, obtained after treatment of BL6 cells with mutagen N-methyl-N-nitro-N'-nitro-soguanidine, had relatively high levels of expression of class I H-2b Ag. Poly(I:C)-stimulated spleen cells of nude mice were highly cytotoxic for BL6T2, whereas H-2b-low BL6 cells were less sensitive to NK activity in an 18-h 51Cr-release assay. Similar results were obtained after 4-h incubation of radio-labeled tumor cells with IL-2-activated effector cells. In contrast, both lines were equally sensitive to lysis by purified granules derived from rat large granular lymphocytes (LGL) or by macrophages. By using various clones selected from BL6 or BL6T2 cells, it was found that BL6 or BL6T2 clones with low H-2b Ag expression were less sensitive to lysis by NK cells than H-2b-high clones. After IFN treatment of either BL6 or BL6T2, the target cells became more resistant to lysis by either NK cells or by purified LGL granules. IFN-treated BL6 cells had substantially increased expression of H-2b Ag and in this respect became similar to untreated BL6T2. However, IFN-treated BL6 cells were more resistant than BL6T2 cells to lysis by NK cells and LGL granules, suggesting that augmentation of H-2b Ag expression and NK resistance could be two independent IFN-induced effects. With a cold target inhibition assay, it was found that BL6T2 or its H-2 positive clones were highly competitive and inhibited the cytotoxic activity of NK and lymphokine-activated killer cells against radiolabeled YAC-1 and BL6T2, whereas BL6 cells or H-2-negative clones of BL6T2 and BL6 lines showed poor competitive ability. Thus, our data indicate that the NK resistance of H-2-low BL6 cells may be due to a paucity of NK recognizable determinants. N-Methyl-N-nitro-N'-nitroguanidine treatment of BL6 melanoma cells was associated with an increase in class I H-2b Ag expression and NK sensitivity, suggesting the involvement of class I MHC Ag in the sensitivity of tumor cells to NK cell-mediated cytotoxicity.  相似文献   

16.
MHC class I molecules protect normal and transformed cells from lysis by natural killer (NK) cells through recognition of receptors expressed on leucocytes. Defects in NK cell activity and lymphokine activated killer (LAK) cell generation have been previously demonstrated in patients with renal cell carcinoma (RCC). However, to date, the importance of NK receptor/MHC class I interactions for immune evasion by RCC cells has not been described. In this study, human RCC cell lines (HTB46, HTB47, ACHN, CRL 1933 and HTB44) were found to be susceptible to lysis by both NK cells and interleukin-15 (IL-15)-derived LAK cells from normal donors in vitro. However, when NK cells were co-cultured with RCC cells their expression of the CD94 NK receptor molecule was significantly increased and their cytolytic activity against RCC targets was reduced. The cytolytic activity of NK cells was restored by the addition of IL-15, which further augmented the expression of CD94 on CD56+ NK cells. Disruption of NK receptor-MHC class I interactions by the addition of blocking antibodies to CD94 had no effect on the lysis of K562 or HTB47 targets by NK cells. However, the sensitivity of HTB46 cells to NK-mediated lysis was increased by blocking the CD94 receptor molecule, but only when the NK cells had not been previously co-cultured with RCC cells. This was independent of the presence of IL-15. These results show that RCC cells can inhibit NK activity via CD94 and suggest that disruption of interactions between receptor and ligand on RCC cells in vivo may augment the immune response against tumours by innate effector cells.  相似文献   

17.
The IA4 mAb was identified among a series of antibodies raised in BALB/c mice after immunization against a HLA class I-deficient, lymphokine-activated killer (LAK)-susceptible EBV-B lymphocyte line. The IA4 antibody was selected because of its high expression, in the range of 10(5) to 25 x 10(5) sites/cell, on several B lymphocyte lines (EBV-transformed or Burkitt) and monocytic lines such as HL60 and U937, and because its expression was correlated with both target susceptibility to LAK lysis and reduced expression of HLA class I surface Ag on two pairs of EBV-B-transformed cell lines (721/721.134 and MM/10F2). Despite the strategy followed to raise the mAb and the correlation mentioned above, no direct role of the IA4 molecules in LAK susceptibility has been established, since the IA4 molecule is poorly expressed on the sensitive targets Daudi and K562; moreover, the IA4 antibody did not affect reproducibly the in vitro killing of positive target cells by LAK effectors. The IA4 antibody was poorly immunoprecipitating and the surface molecule recognized was identified by gene cloning following an expression strategy using a U937 cDNA library transfected in COS cells, and a screening strategy based on membrane expression of IA4 molecule. The IA4 cDNA is virtually identical to "R2," a mRNA species previously identified in activated human T cells by subtractive hybridization. The IA4 cDNA contains an open reading frame coding for a protein 267 amino acids long with four potential transmembrane domains and one large external hydrophilic domain of about 110 amino acids, possibly glycosylated. The encoded protein belongs to a family of surface molecules, the tetra spans transmembrane protein superfamily, all displaying the four transmembrane domains, expressed on various cell types including lymphocytes (CD9, CD37, CD53, TAPA-1), melanoma cells (ME491), and intestinal cells (CO-029). These molecules have been reported to be involved in cell activation and cell death. Surprisingly, the Schistosoma mansoni Ag Sm23 displays significant homologies with this family. The IA4 molecule is a widely distributed surface marker expressed on circulating lymphocytes and monocytes, newborn thymocytes, and the cell lines mentioned above. The IA4 molecule expression is up-regulated upon cell activation. Weakly expressed on resting peripheral T and B lymphocytes and large granular lymphocytes (NK), its expression roughly doubles after activation by PHA, staphylococcus aureus Cowan I, and IL-2, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Although CTL and polymorphic, classical MHC class I molecules have well defined roles in the immune response against tumors, little is currently known regarding the participation of nonpolymorphic, nonclassical MHC class I in antitumor immunity. Using an MHC class I-deficient melanoma as a model tumor, we demonstrate that Q9, a murine MHC class Ib molecule from the Qa-2 family, expressed on the surface of tumor cells, protects syngeneic hosts from melanoma outgrowth. Q9-mediated protective immunity is lost or greatly diminished in mice deficient in CTL, including beta(2)-microglobulin knockout (KO), CD8 KO, and SCID mice. In contrast, the Q9 antitumor effects are not detectably suppressed in CD4 KO mice with decreased Th cell activity. Killing by antitumor CTL in vitro is Q9 specific and can be blocked by anti-Q9 and anti-CD8 Abs. The adaptive Q9-restricted CTL response leads to immunological memory, because mice that resist the initial tumor challenge reject subsequent challenges with less immunogenic tumor variants and show expansion of CD8(+) T cell populations with an activated/memory CD44(high) phenotype. Collectively, these studies demonstrate that a MHC class Ib molecule can serve as a restriction element for antitumor CTL and mediate protective immune responses in a syngeneic setting.  相似文献   

19.
The peri-implantation uterus contains an expanded population of NK1.1(+) V alpha 14(+) TCR(int) (NKT) lymphocytes. Although these cells bear the above features in common with other NKT cells populations in thymus, bone marrow, liver, and spleen, they differ from these other populations in terms of an altered V beta repertoire and absence of a CD4(+) component. In this study, we demonstrate that the uterine population also differs from other NKT cell populations because they recognize a class I/class I-like molecule other than CD1, whereas most previously described V alpha 14(+) NKT cells are CD1-restricted. Moreover, the class I/class I-like molecule leading to the uterine NKT cell expansion may be supplied by the fetus. These data demonstrate a novel mechanism whereby the fetus is capable of modulating the maternal immune system.  相似文献   

20.
NK cells are key effectors of innate immunity and host survival during cytomegalovirus (CMV) infection. Innate murine CMV (MCMV) resistance in MA/My mice requires Ly49H/m157-independent H-2k-linked NK cell control. Here we show that replacement of MA/My H-2k with C57L H-2b susceptibility genes led to a remarkable loss of innate virus immunity, though NK gamma interferon was induced in H-2b and H-2k strains shortly after infection. Thus, H-2b genes expressed in C57L or MA/My.L-H2b are sufficient in alerting NK cells to intrusion but fail to support NK restraint of viral infection. In addition, novel H-2 recombinant strains were produced and utilized in a further refinement of a critical genetic interval controlling innate H-2k-linked MCMV resistance. Importantly, this analysis excluded the gene interval from Kk class I through class II. The responsible gene(s) therefore resides in an interval spanning Dk class Ia and more-distal major histocompatibility complex (MHC) nonclassical class Ib genes. Recently, the NK activation receptor Ly49P and MHC class I Dk proteins were genetically implicated in MCMV resistance, in part because Ly49P-expressing reporter T cells could specifically bind Dk molecules on MCMV-infected mouse embryonic fibroblasts (MEFs). However, as we found that H-2k innate resistance differs in the C57L or MA/My backgrounds and because MCMV very efficiently downregulates H-2k class I proteins in L929 cells and primary MEFs shortly after infection, a Ly49P/Dk model should not fully explain H-2k-linked MCMV resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号