首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of 3-(indol-2-yl)indazoles as inhibitors of Chek1 kinase is described. Introduction of amides and heteroaryl groups at the C6 position of the indazole ring system provided sufficient Chek1 potency and selectivity over Cdk7 to permit escape from DNA damage-induced arrest in a cellular assay. Enzyme potency against Chek1 was optimized by the incorporation of a hydroxymethyl triazole moiety in compound 21 (Chek1 IC50 = 0.30 nM) that was shown by X-ray crystallography to displace one of three highly conserved water molecules in the HI region of the ATP-binding cleft.  相似文献   

2.
A series of 9-(2'-beta-C-methyl-beta-d-ribofuranosyl)-6-substituted purine derivatives were synthesized as potential inhibitors of HCV RNA replication. Their inhibitory activities in a cell based HCV replicon assay were reported. A prodrug approach was used to further improve the potency of these compounds by increasing the intracellular levels of 5'-monophosphate metabolites. These nucleotide prodrugs showed much improved inhibitory activities of HCV RNA replication.  相似文献   

3.
In a continuing effort to discover novel chemotypes as potent and selective PDE5 inhibitors for the treatment of male erectile dysfunction (ED), we have found that 4-benzylaminoquinoline derivatives are very potent and selective PDE5 inhibitors. Some compounds in this series had PDE5 IC(50)'s as low as 50 pM. While an electron withdrawing group at the C6-position of the quinoline substantially improved PDE5 potency, an ethyl group at the C8-position not only improved the PDE5 potency but also the isozyme selectivity. Substitutents at the C3-position can incorporate a variety of different groups. The synthesis and primary structure-activity relationship of this new series of potent PDE5 inhibitors are described.  相似文献   

4.
The discovery of a class of diheteroaromatic amines based on LY2835219 as cyclin-dependent kinase (CDK1/4/6) inhibitors was described. The series was found to have much more improved CDK1 inhibition and potent in vitro anti-proliferative effects against cancer cell lines. The synthesis and structure–activity relationship studies of these compounds were reported. One promising compound was selected to evaluate as a novel lead compound after in vitro and in vivo profiling.  相似文献   

5.
Multiple co-crystal structures of an adenine-based series of inhibitors bound to the molecular chaperone Hsp90 have been determined. These structures explain the observed SAR for previously described compounds and new compounds, which possess up to 8-fold improved potency against the isolated enzyme. Anti-tumour cell potency and mechanism of action data is also described for the most potent compounds. These data should enable the design of more potent Hsp90 inhibitors.  相似文献   

6.
Prostate Specific Antigen (PSA) is a biomarker used in the diagnosis of prostate cancer and to monitor therapeutic response. However, its precise role in prostate carcinogenesis and metastasis remains largely unknown. A number of studies arguing in the favor of an active role of PSA in prostate cancer development and progression have implicated this serine protease in the release and activation of growth factors such as insulin-like growth factor 1 (IGF1) through cleavage of insulin like growth factor binding protein 3 and Transforming Growth Factor beta (TGF-beta) through cleavage of Latent TGF-beta. In contrast, other studies suggest that PSA activity might hinder tumor development and progression. In light of these contradictory findings, efficient inhibitors of PSA are needed for exploring its biological role in tumor development and metastasis. Towards the goal of developing potent inhibitors of PSA, we have explored the molecular mechanism of a series of beta-lactam based compounds on binding to PSA using activity assays, matrix assisted laser desorption ionization with a time-of-flight mass spectrometry, and GOLD docking methodology. The mass spectrometry experiments and the activity assays confirmed the time-dependent and covalent nature of beta-lactam binding. To gain insights on the reaction intermediates at the molecular level, we docked beta-lactam inhibitors to a homology modeled PSA using the GOLD docking program in noncovalent and covalent binding modes. The docking studies elucidated the molecular details of the early noncovalent Michaelis complex, the acyl-enzyme covalent complex, and the nature of conformational reorganization required for the long term stability of the covalent complex. Additionally, the molecular basis for the effect of stereochemistry of the lactam ring on the inhibitory potency was elucidated through docking of beta-lactam enantiomers. As a validation of our docking methodology, two novel enantiomers were synthesized and evaluated for their inhibitory potency using fluorogenic substrate based activity assays. Additionally, cis enantiomers of eight beta-lactam compounds reported in a previous study were docked and their GOLD scores and binding modes were analyzed in order to assess the general applicability of our docking results. The close agreement of our docking results with the experimental data validates the mechanistic insights revealed through the docking studies and paves the way for the design and development of potent and specific inhibitors of PSA.  相似文献   

7.
Installation of a C2-aminopropyl side chain to the 2,4-diaryl-2,5-dihydropyrrole series of kinesin spindle protein (KSP) inhibitors results in potent, water soluble compounds, but the aminopropyl group induces susceptibility to cellular efflux by P-glycoprotein (Pgp). We show that by carefully modulating the basicity of the amino group by beta-fluorination, this series of inhibitors maintains potency against KSP and has greatly improved efficacy in a Pgp-overexpressing cell line. The discovery that cellular efflux by Pgp can be overcome by carefully modulating the basicity of an amine may be of general use to medicinal chemists attempting to transform leading compounds into cancer cell- or CNS-penetrant drugs.  相似文献   

8.
The differences in the inhibition activity of organophosphorus agents are a manifestation of different molecular properties of the inhibitors involved in the interaction with the active site of enzyme. We were interested in comparing the inhibition potency of four known synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2, constituting organophosphorus compounds, where R = CCl3 (1), CHCl2 (2), CH2Cl (3) and CF3 (4), and four new ones with the general formula RC(O)NHP(O)(R')2, where R' = morpholine and R = CCl3 (5), CHCl2 (6), CH2Cl (7), CF3 (8), on AChE and BuChE activities. In addition, in vitro activities of all eight compounds on BuChE were determined. Besides, in vivo inhibition potency of compounds 2 and 6, which had the highest inhibition potency among the tested compounds, was studied. The data demonstrated that compound 2 from the compound series 1 to 4 and compound 6 from the compound series 5 to 8 are the most sensitive as AChE and BuChE inhibitors, respectively. Comparing the IC50 values of these compounds, it was clear that the inhibition potency of these compounds for AChE are 2- to 100-fold greater than for BuChE inhibition. Comparison of the kinetics (IC50, Ki, kp, KA and KD) of AChE and BuChE inactivation by these compounds resulted in no significant difference for the measured variables except for compounds 2 and 6, which appeared to be more sensitive to AChE and BuChE by significantly higher kp and Ki values and a lower IC50 value in comparison with the other compounds. The LD50 value of compounds 2 and 6, after oral administration, and the changes of erythrocyte AChE and plasma BuChE activities in albino mice were studied. The in vivo experiments, similar to the in vitro results, showed that compound 2 is a stronger AChE and BuChE inhibitor than the other synthesized carbacylamidophosphates. Furthermore, in this study, the importance of electropositivity of the phosphorus atom, steric hindrance and leaving group specificity were reinforced as important determinants of inhibition activity.  相似文献   

9.
Flavonolignans from milk thistle (Silybum marianum) have been investigated for their cellular modulatory properties, including cancer chemoprevention and hepatoprotection, as an extract (silymarin), as partially purified mixtures (silibinin and isosilibinin), and as pure compounds (a series of seven isomers). One challenge with the use of these compounds in vivo is their relatively short half-life due to conjugation, particularly glucuronidation. In an attempt to generate analogues with improved in vivo properties, particularly reduced metabolic liability, a semi-synthetic series was prepared in which the hydroxy groups of silybin B were alkylated. A total of five methylated analogues of silybin B were synthesized using standard alkylation conditions (dimethyl sulfate and potassium carbonate in acetone), purified using preparative HPLC, and elucidated via spectroscopy and spectrometry. Of the five, one was monomethylated (3), one was dimethylated (4), two were trimethylated (2 and 6), and one was tetramethylated (5). The relative potency of all compounds was determined in a 72 h growth-inhibition assay against a panel of three prostate cancer cell lines (DU-145, PC-3, and LNCaP) and a human hepatoma cell line (Huh7.5.1) and compared to natural silybin B. Compounds also were evaluated for inhibition of both cytochrome P450 2C9 (CYP2C9) activity in human liver microsomes and hepatitis C virus infection in Huh7.5.1 cells. The monomethyl and dimethyl analogues were shown to have enhanced activity in terms of cytotoxicity, CYP2C9 inhibitory potency, and antiviral activity (up to 6-fold increased potency) compared to the parent compound, silybin B. In total, these data suggested that methylation of flavonolignans can increase bioactivity.  相似文献   

10.
The discovery and optimization of a series of 6-aryl-azabenzimidazole inhibitors of TBK1 and IKK-ε is described. Various internal azabenzimidazole leads and reported TBK1/IKK-ε inhibitors were docked into a TBK1 homology model. The resulting overlays inspired a focused screen of 6-substituted azabenzimidazoles against TBK1/IKK-ε. This screen resulted in initial hit compound 3. The TBK1/IKK-ε enzyme and cell potency of this compound was further improved using structure guided drug design. Systematic exploration of the C6 aryl group led to compound 19, a potent inhibitor of TBK1 with selectivity against cell cycle kinases CDK2 and Aurora B. Further elaboration and optimization gave compound 25, a single digit nM inhibitor of TBK1. These compounds may serve as in vitro probes to evaluate TBK1/IKK-ε as an oncology target.  相似文献   

11.
Three series of 5-substituted 1,3-diphenyl-6-(omega-dialkyl- and omega-cyclo-aminoalkyl)thio-2-thiobarbiturates (11-13) were synthesized as polysubstituted thioanalogues of merbarone, a topoisomerase II inhibitor acting on the catalytic site. To better understand pharmacophore requirements, a forth series of conformationally constrained analogues 14 was also prepared. Derivatives 11b,e, 14b,e,h,i,j were active in the low micromolar concentration range (IC(50): 3.3-4.3 microM), whereas compounds 11a,c,d,f,h,j and 13a,b,d,g,j and 14a,d,f showed IC(50) values between 10 and 15.5 microM. In contrast, compounds 12a-c,g-j, 13e,f,h and 14k were inactive. Cytotoxicity data provided from N.C.I. on selected compounds provided evidence that 11b,d, 13d,g and 14b,d,f,h,i,j were endowed with potent antiproliferative activity against leukemia and prostate cell lines (GI(50) up to 0.01 microM). In general, bicyclic derivatives 14 were up to 10-fold more potent than monocyclic counterparts against solid tumor-derived cell lines. SAR studies indicated that, in general, a certain tolerability in length of the alkyl side chains and in shape of distal amines is allowed in the four series, but in the monocyclic derivatives (11-13) antiproliferative activity was strongly affected by the nature of the 5-substituents (COOC(2)H(5)>COCH(3)>C(6)H(5)). Compounds 11b and 14b were also evaluated against KB cell subclones expressing altered levels of topoisomerases or the multidrug resistance phenotype (MDR). In both cases the above compounds showed a decrease in potency. In enzyme assays, 11b and 14b turned out to be inhibitors of topoisonerase II as merbaron.  相似文献   

12.
Abstract

A series of 16 novel benzenesulfonamides incorporating 1,3,5-triazine moieties substituted with aromatic amines, dimethylamine, morpholine and piperidine were investigated. These compounds were assayed for antioxidant properties by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical decolarisation assay and metal chelating methods. They were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, which are associated with several diseases such as Alzheimer, Parkinson and pigmentation disorders. These benzenesulfonamides showed moderate DPPH radical scavenging and metal chelating activity, and low ABTS cation radical scavenging activity. Compounds 2?b, 3d and 3?h showed inhibitory potency against AChE with % inhibition values of >90. BChE was also effectively inhibited by most of the synthesised compounds with >90% inhibition potency. Tyrosinase was less inhibited by these compounds.  相似文献   

13.
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.  相似文献   

14.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3-C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl(2)2, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl(2)4, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 microM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 1-4, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   

15.
A series of novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors was prepared via treatment of various diaryl amides with tetrachlorosilane/sodium azide. All compounds were tested in cyclooxygenase (COX) assays in vitro to determine COX-1 and COX-2 inhibitory potency and selectivity. Tetrazoles contained a methylsulfonyl or sulfonamide group as COX-2 pharmacophore displayed only low inhibitory potency towards COX-2. Most potent compounds showed IC(50) values of 6 and 7 μM for COX-2. All compounds showed IC(50) values greater 100 μM for COX-1 inhibition.  相似文献   

16.
Based on the structure of HIV-1 gp41 binding site for small-molecule inhibitors, optimization of lead 2 resulted in the discovery of a new series of 2,5-dimethyl-3-(5-(N-phenylrhodaninyl)methylene)-N-(3-(1H-tetrazol-5-yl)phenyl)pyrrole compounds with improved anti-HIV-1 activity. The most active compounds 13a and 13j exhibited significant potency against gp41 6-HB formation with IC(50) values of 4.4 and 4.6 μM and against HIV-1 replication in the MT-2 cells with EC(50) values of 3.2 and 2.2 μM, respectively, thus providing a new starting point to develop highly potent small-molecule HIV fusion inhibitors targeting gp41.  相似文献   

17.
The synthesis and biological activity of a series of novel 5-substituted-4-hydroxy-8-nitroquinazolines that may function as inhibitors of EGFR- and/or ErbB-2-related oncogenic signaling are described. These compounds were prepared by S(N)Ar reaction of 5-chloro-4-hydroxy-8-nitroquinazoline with alkyl or aryl amines, or alkyl alcohol as nucleophiles. Although the enzyme assay showed a weak inhibition effect against both EGFR and ErbB-2 tyrosine kinases, the cell-based antitumor activity turned out promising. Compounds having 5-anilino substituent exhibit high potency with 5-(4-methoxy)anilino-4-hydroxy-8-nitroquinazoline (1h) being the best dual EGFR/ErbB-2 inhibitors, which effectively inhibited the growth of both EGFR (MDA-MB-468, IC(50)<0.01microM) and ErbB-2 (SK-BR-3, IC(50)=13microM) overexpressing human tumor cell lines in vitro. More interestingly, the variation of the substituent(s) at the 3- and/or 4-position of the 5-anilino portion was found to modulate the selectivity and potency dramatically. However, compounds having an alkylamino or alkyloxy group at the 5-position of 4-hydroxy-8-nitroquinazolines are essentially inactive. These results are consistent with molecular modeling observations. This study was the first attempt to identify new structural types of dual EGFR/ErbB-2-related signaling inhibitors by incorporation of the anilino group at the 5-position of 4-hydroxy-8-nitroquinazolines' core structure, providing promising new templates for further development of potent inhibitors targeting both EGFR and ErbB-2 tyrosine kinases.  相似文献   

18.
A combination of structure-based design and both solution, and solid-phase synthesis were utilized to derive a potent (nM) series of HIV-1 protease inhibitors bearing a structurally novel backbone. Detailed structural analysis of several inhibitors prepared in this series has suggested that rigidification of the P1/P2 region of this class of molecules may result in compounds with improved potency.  相似文献   

19.
A new series of compounds, 5-substituted 2-amino-4-chloro-8-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-7,8-dihydropteridin-6(5H)-ones, have been designed and identified as potent and selective inhibitors of Hsp90. These compounds demonstrated nanomolar potency toward both Hsp90-regulated Her2 degradation and the growth of a panel of human tumor cell lines in cell-based assays. High selectivity of these compounds toward Hsp90 was evident given that they did not inhibit a panel of 34 kinases at 10 μM. The structure–activity relationship (SAR) of this series is reported here.  相似文献   

20.
A series of macrocyclic peptidic BACE-1 inhibitors was designed. While potency on BACE-1 was rather high, the first set of compounds showed poor brain permeation and high efflux in the MDRI–MDCK assay. The replacement of the secondary benzylamino group with a phenylcyclopropylamino group maintained potency on BACE-1, while P-glycoprotein-mediated efflux was significantly reduced and brain permeation improved. Several compounds from this series demonstrated acute reduction of Aβ in human APP-wildtype transgenic (APP51/16) mice after oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号