首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of Putrescine during Chilling Injury of Fruits   总被引:5,自引:2,他引:3       下载免费PDF全文
Putrescine (Put) increased 68% in lemon (Citrus limon (L.) Burm. f. cv Bearss) flavedo, 39% in grapefruit (C. paradisi Macf. cv Marsh) flavedo, 49% in grapefruit juice, and 149% in pepper (Capsicum annuum L. cv Early Calwonder) pericarp when fruits were stored at chilling temperatures. In lemon flavedo, the coefficient of correlation (r2) between Put concentration with severity of chilling was 0.90 and Put levels almost doubled; the injury index going from 1 to 2 units. Pepper pericarp, which was the most chilling-sensitive tissue tested (injury index going from 1 to 3.8 units), showed the greatest difference in Put accumulation (166 to 413 nanomoles per gram fresh weight) between storage temperatures of 7.2 and 1°C. The least difference (338 to 470 nanomoles per gram fresh weight) was found in grapefruit flavedo between storage temperatures of 15.5 and 4.4°C; the injury index going from 1 to 1.3 units.  相似文献   

2.
Purvis AC 《Plant physiology》1988,86(2):623-625
The capacity of the alternative respiratory pathway increased in the flavedo tissue of `Marsh' grapefruit (Citrus paradisi Macf.) stored at 5°C for 2 weeks or longer. Elevated O2 levels during respiratory assays enhanced respiration by the tissue at 20°C but not at 5°C. At 20°C, salicylhydroxamic acid alone was inhibitory to O2 uptake only in elevated O2. In conventional Warburg studies, alternative pathway respiration may be limited by the low solubility and/or slow rate of O2 diffusion into plant tissues, such as grapefruit flavedo, and may be responsible for the apparent low utilization of the alternative pathway potential observed in other studies.  相似文献   

3.
The effect of U. maydis infection on the invertase activity of maize leaves has been studied. Infection causes a specific stimulation of an acid invertase in soluble and pellet fractions of homogenized tissue. Invertase activity is stimulated within one day after infection, and is maintained at a high level until 10 days after infection, in contrast to the progressive decline in activity with age, in healthy leaves. Analyses of soluble extracts by gel electrophoresis suggest that the invertase showing this increase is derived from the host and not the pathogen.  相似文献   

4.
Multiple forms of invertase in developing oat internodes   总被引:2,自引:1,他引:1       下载免费PDF全文
Three different invertases are found in the developing internodes of oat (Avena sativa cv. Victory). Two soluble invertases (I and II) are separable on diethylaminoethylcellulose and Sephadex columns. They are further distinguished by their kinetic constants, heat stability, and differences in stability and apparent activity optima in response to pH treatments. Relative activities of the two soluble isozymes change considerably during the developmental stages examined. Invertase I activity rises early and begins to fall after maximal activity is reached at 6 hours of incubation. This early increase in activity accompanies the period of most rapid growth rate of the internode. Invertase II activity does not increase significantly during the first 6 hours of internode extension, but rapidly rises to a maximum activity at 16 hours, then declines. The third form of invertase, bound invertase (III), is present in both immature and mature stem tissue. Its activity increases (by 6 hours) during immature growth stages, decreases considerably with maturation, and remains relatively constant in mature tissue.  相似文献   

5.
An acid invertase from the fern Pteris deflexa Link was purified and the effect of reaction products on enzyme activity was studied. Fructose and glucose were competitive and non-competitive inhibitors of the enzyme, respectively. Since proteins suppressed glucose and fructose inhibition of the enzyme, an invertase modulation by reaction products is unlikely; nevertheless, an invertase proteinaceous inhibitor previously reported could have a role in this respect. The purified enzyme was an heterodimer M r 90,000 Daltons composed of subunits of 66,000 and 30,000 Daltons. The enzyme had β -fructofuranosidase activity and hydrolyzed mainly sucrose but also raffinose and stachyose, with K m of 3.22, 10.80 and 38.50 mM, respectively. Invertase activity with an optimum pH at 5.0 was present in almost every leaf fern tissue. Pinnas (sporophyll leaflets) had the higher enzyme levels. Invertase histochemical and immunochemical localization studies showed the enzyme mainly in phloem cells. Epidermis, collenchyma and parenchyma cells also showed invertase protein.  相似文献   

6.
Glycosidases were extracted from grapefruit ( Citrus paradisi Macf. cv. Ruby Red) flavedo, albedo, and juice vesicles harvested at five periods throughout the season. Flavedo β-galactosidase activity was high at the September harvest and then significantly declined by November. Thereafter, no further changes occurred in β-galactosidase activity. Flavedo α-galactosidase activity was low and unchanged throughout the study. α-Mannosidase, initially low in flavedo, steadily increased with advanced maturity. Trends in glycosidase activities of albedo were similar but attenuated. Juice vesicle β-galactosidase did not change through the study period, whereas α-galactosidase activity decreased 70% after the initial harvest period. α-Mannosidase was initially high and then decreased to 50% of the original activity. A second peak of activity was measured in March, followed by a second decline. Extractability differences of the glycosidases suggest differences in compartmentation and function. Two isozymes of α-mannosidase were separated in flavedo and one in juice vesicles, and characteristics were determined at an early and late harvest period. The results suggest that changes in the three glycosidases could be used to further define maturity and senescence in grapefruit.  相似文献   

7.
An acid invertase from the fern Pteris deflexa Link was purified and the effect of reaction products on enzyme activity was studied. Fructose and glucose were competitive and non-competitive inhibitors of the enzyme, respectively. Since proteins suppressed glucose and fructose inhibition of the enzyme, an invertase modulation by reaction products is unlikely; nevertheless, an invertase proteinaceous inhibitor previously reported could have a role in this respect. The purified enzyme was an heterodimer Mr 90,000 Daltons composed of subunits of 66,000 and 30,000 Daltons. The enzyme had beta-fructofuranosidase activity and hydrolyzed mainly sucrose but also raffinose and stachyose, with Km of 3.22, 10.80 and 38.50 mM, respectively. Invertase activity with an optimum pH at 5.0 was present in almost every leaf fern tissue. Pinnas (sporophyll leaflets) had the higher enzyme levels. Invertase histochemical and immunochemical localization studies showed the enzyme mainly in phloem cells. Epidermis, collenchyma and parenchyma cells also showed invertase protein.  相似文献   

8.
A protein present in the developing endosperm of maize (Zea mays L.) causes a loss of invertase activity under certain conditions of incubation. This protein, designated an inactivator, inactivates invertase I of maize even in the presence of other proteins. No inactivation of invertase II of maize or yeast invertase has been observed. The inactivator and invertase I are found only in the endosperm. The quantity of inactivator increases in the normal endosperm during development while invertase I activity decreases. However, the altered levels of invertase I activity in several endosperm mutant lines do not result from different quantities of inactivator. The inactivator can decrease invertase I activity during a preincubation period before addition of sucrose; inactivation is noncompetitive. Invertase I activity decreases curvilinearly with an increase in inactivator concentration. At high buffer concentrations or low inactivator concentrations in the reaction mixture, a latent period is observed when invertase I is not inactivated. Inactivation increases with an increase in temperature and a decrease in pH.  相似文献   

9.
10.
Comparative enzymic studies of sugar beet (Beta vulgaris L.) taproots and fibrous roots revealed differences in invertase (EC 3.2.1.26) and sucrose synthetase (EC 2.4.1.13) activity. Invertase activity of the two root forms differs with respect to specific activity, pH optimum, and enzyme solubility. Acid invertase (pH 4.5) in the taproot was restricted to the peripheral meristematic tissue which produces cells for both taproot and fibrous root growth. This finding supports the hypothesis that the enzyme regulates sucrose partitioning between the taproot and fibrous roots. A distinct alkaline invertase (pH 8.0) was detected in sucrose storage tissues of the taproot.  相似文献   

11.
Satsuma mandarin fruit (Citrus unshiu Mark.) photosynthesizes as comparable to leaf at about 100 days after full bloom (DAFB). In this study, translocation and accumulation of fruit-fixed photosynthate were investigated by using 14CO2. When fruit at 108 DAFB was exposed to 14CO2 for 48 h under 135 photosynthetic photon flux density (PPFD), 14C-sucrose, 14C-glucose and 14C-fructose were detected not only in flavedo but juice sac; more than 50?% of fruit assimilated 14C-sugars were present in juice sac. Thus, majority of rind-fixed photosynthate are infiltrated into juice sac and accumulated there within 48 h after assimilation. Although 14C-sucrose was predominant at flavedo where high SS (sucrose synthase) activity toward synthesis was present, the amount decreased gradually from the outside (flavedo) to the inside (juice sac) of fruit. In vascular bundle, strong SS toward cleavage and soluble acid invertase activities were involved, and 14C-fructose was predominant in juice sac. Accordingly, rind-fixed photosynthate is once converted to sucrose, the translocated sugar in Citrus, at flavedo by SS toward synthesis, and loaded on vascular bundle through symplastic and/or apoplastic movement in the albedo tissue. In the vascular bundle, sucrose may be degraded by SS toward cleavage and invertase, and resulting hexoses transported symplastically to the juice sac through juice stalk.  相似文献   

12.
l-Phenylalanine ammonia-lyase (PAL) activity is low in the external layers (flavedo) of intact mature grapefruit peel. Flavedo discs evince upon incubation increasing PAL activity and ethylene production. Light has no effect in enhancing PAL activity in discs. Exogenous ethylene stimulates PAL activity in the flavedo of intact mature grapefruits (half maximum stimulation at 15 ppm); such activity rapidly decreases when fruit is removed from the ethylene containing atmosphere. Carbon dioxide inhibits both ethylene production and PAL activity of discs; exogenous ethylene only partly relieves PAL inhibition. Cycloheximide inhibits both PAL activity and ethylene production by flavedo discs. The same concentration of cycloheximide also inhibits PAL activity of discs in the presence of exogenous ethylene. Protein synthesis seems therefore to be needed at both levels of ethylene evolution and enhancement of PAL activity.  相似文献   

13.
1. When disks of root tissue from sugar or red beet (Beta vulgaris L.) are washed in running aerated tap water the sucrose contained in them disappears and glucose and fructose are formed. 2. Invertase activity in the disks has been measured by a polarimetric method. Freshly cut tissue has a very low activity, but a considerable increase occurs during the first 3–4 days of washing, the final activity being sufficient to hydrolyse the sucrose contained in the disk within a few hours. 3. Disks of red beet have been cut and shaken in water under aseptic conditions. Sucrose breakdown and invertase development still took place. Microbial contamination is therefore not responsible. 4. Trisaccharides that appear in sugar-beet disks during the washing process have been isolated and identified; their formation also suggests that a higher-plant invertase is acting. 5. The significance of these results is discussed in relation to protein synthesis in washed storage-tissue slices, and the occurrence of high invertase activity in growing plant cells.  相似文献   

14.
Invertase was entrapped in cellulose triacetate fibers and the properties of the insoluble derivative were studied. Fiber-entrapped invertase was found very stable under operating conditions. For some insoluble preparations a half-life value of 5,300 days was calculated; a sample of invertase fibers, continuously hydrolyzing sucrose, maintained unchanged its activity for five years. The activity displayed by invertase fibers was 15–65% of that of the free enzyme, depending on the amount of entrapped enzyme and on the porosity of the fibers. At very high substrate concentrations the activity of the entrapped invertase approximated to that of the free enzyme. The pH optimum for activity was around 4.5 for the free and entrapped invertase. The native and entrapped enzyme was unstable at temperatures higher than 35°C. The continuous hydrolysis of sucrose using invertase fiber was studied and the potential industrial application of entrapped enzyme is discussed.  相似文献   

15.
The sucrose cleavage by sucrose synthase (SuSy) and neutral invertase was studied in wheat roots (Triticum aestivum L.) subjected to hypoxia or anoxia for 4 days. By in situ activity staining, increased SuSy activity was observed in the tip region and stele of root axes while the activity of invertase decreased. Cellulose content significantly increased in hypoxically treated roots. The cellulose deposition was correlated with regions of high SuSy activity, being mainly located in the pericycle and endodermis. Invertase activity was distributed along the root without clear difference between cortex and stele. Under root hypoxia, a significant increase in the structural carbohydrates, callose and especially cellulose, was shown. Increasing levels of soluble carbohydrates were partially used to synthesize cellulose for secondary wall thickening and callose to counteract the tissue injury following low-oxygen stress. Under strict anoxia, the roots were much more injured but sustained a high level of cellulose and callose while the soluble carbohydrates almost disappeared.  相似文献   

16.
Guan HP  Janes HW 《Plant physiology》1991,96(3):922-927
Effects of light on carbohydrate levels and certain carbon metabolizing enzyme activities were studied during the early development of tomato (Lycopersicon esculentum) fruit. Sucrose levels were low and continued to decline during development and were unaffected by light. Starch was significantly greater in light. Invertase activity was similar in both light- and dark-grown fruit. Sucrose synthase activity was much lower than invertase and showed a slight decrease in light-grown fruit between days 21 and 28. Light-grown fruit also had higher ADP glucose pyrophosphorylase activity than dark-grown fruit, which was correlated with higher starch levels. The rapidly decreasing activity of ADP glucose pyrophosphorylase during early fruit development in the dark in conjunction with reduced starch levels and rates of accumulation indicates that ADP glucose pyrophosphorylase is crucial for carbon import and storage in tomato. The differential stimulation of ADP glucose pyrophosphorylase activity from light- and dark-grown tissue by 3-phosphoglycerate suggests that this enzyme may be allosterically altered by light.  相似文献   

17.
Singh MB  Knox RB 《Plant physiology》1984,74(3):510-515
Two different forms of invertase are found in pollen of lily (Lilium auratum). One form is cytoplasmic (Invertase 1) and the other is bound to the pollen wall (Invertase 2). Invertase 1 has been partially purified and is a glycoprotein (apparent molecular weight, 450 kilodaltons) with a Km of 0.65 millimolar for sucrose. The two invertases differ in pH optimum and thermal stability. Invertases of lily pollen are β-fructofuranosidases which can hydrolyze sucrose but not melizitose. The mature pollen grains have enzyme activity in both cytoplasmic and wall fractions, and no increase in the activity of either occurs during germination. The wall-bound enzyme could not be released by treatments with detergents or high salt concentrations.  相似文献   

18.
Accumulation of lycopene in citrus fruits is an unusual feature restricted to selected mutants. Grapefruit (Citrus paradisi Macf.) is the Citrus specie with greater number of red-fleshed mutants, but the molecular bases of this alteration are not fully understood. To gain knowledge into the mechanisms implicated in this alteration, we conducted a comparative analysis of carotenoid profile and of the expression of genes related to carotenoid biosynthesis and catabolism in flavedo and pulp of two grapefruit cultivars with marked differences in colouration: the white Marsh and the red Star Ruby. Mature green fruit of Marsh accumulated chloroplastic carotenoids, while mature tissues lacked carotenoids. However, accumulation of downstream products such as abscisic acid (ABA) and expression of its biosynthetic genes, 9-cis-epoxycarotenoid dioxygenase (NCED1 and NCED2), increased after the onset of colouration. In contrast, red grapefruit accumulated lycopene, phytoene and phytofluene, while ABA content and NCED gene expression were lower than in Marsh, suggesting a blockage in the carotenoid biosynthetic pathway. Expression analysis of three genes of the isoprenoid pathway and nine of the carotenoid biosynthetic pathway revealed virtually no differences in flavedo and pulp between both genotypes, except for the chromoplast-specific lycopene cyclase 2 (β-LCY2) which was lower in the pulp of the red grapefruit. The proportion in the expression of the allele with high (β-LCY2a) and low (β-LCY2b) activity was also similar in the pulp of both genotypes. Therefore, results suggest that reduced expression of β-LCY2 appears to be responsible of lycopene accumulation in the red Star Ruby grapefruit.  相似文献   

19.
Invertase activity is thought to play a regulatory role during early kernel development by converting sucrose originating from source leaves into hexoses to support cell division in the endosperm and embryo. Invertases are regulated at the posttranslational level by small protein inhibitors, INVINHs. We found that in maize (Zea mays), an invertase inhibitor homolog (ZM-INVINH1) is expressed early in kernel development, between 4 and 7 d after pollination. Invertase activity is reduced in vitro in the presence of recombinant ZM-INVINH1, and inhibition is attenuated by pre-incubation with sucrose. The presence of a putative signal peptide, fractionation experiments, and ZM-INVINH1::green fluorescent protein fusion experiments indicate that the protein is exported to the apoplast. Moreover, association of ZM-INVINH1 with the glycoprotein fraction by concanavalin A chromatogaphy suggests that ZM-INVINH1 interacts with an apoplastic invertase during early kernel development. ZM-INVINH1 was localized to the embryo surrounding region by in situ analysis, suggesting that this region forms a boundary, compartmentalizing apoplast invertase activity to allow different embryo and endosperm developmental rates.  相似文献   

20.
The soluble invertase activity in etiolated Avena seedlings was highest at the apex of the coleoptile and much lower in the primary leaf, mesocotyl, and root. The activity in all parts of the seedling consisted of two invertases (I and II) which were separated by chromatography on diethylaminoethylcellulose. Both enzymes appeared to be acid invertases, but they differed in molecular size, pH optimum, and the kinetic parameters Km and Vmax of their action on sucrose, raffinose, and stachyose. Invertase II had low stability at pH 3.5 and below, and exhibited high sensitivity to Hg2+, with complete inhibition by 2 micromolar HgCl2. Segments of coleoptiles incubated in water lost about two-thirds of the total invertase activity after 16 hours. The loss of activity was due primarily to a decrease in the level of invertase II. The loss of invertase was decreased by indoleacetic acid, 2,4-dichlorophenoxyacetic acid, and α-naphthaleneacetic acid but not by β-naphthaleneacetic acid and p-chlorophenoxyisobutyric acid. Conditions that inhibited auxin-induced growth of the segments (20 millimolar CaCl2 and 200 millimolar mannitol) also blocked the auxin effect on invertase loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号