首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Spatial variation in the fish community of the regulated Raia stream (Portugal) was examined during the summer of 1995. Variation in the native fish community (abundance of species-size combinations) was explicitly related to both the abundance of exotic species and habitat variables. The fish community changed in space from assemblages characterised by the high relative abundance of Leuciscus pyrenaicus, Leuciscus alburnoides and the smaller size classes of Barbus bocagei (all Iberian endemics with total length, TL, < 100mm to assemblages characterised by the high relative abundance of Chondrostoma polylepis (Iberian endemic) and B. bocagei with TL > 200mm and of exotics Micropterus salmoides and Lepomis gibbosus (> 100mm TL). The former assemblages used shallow sites far from downstream dams with some current whereas the latter assemblages used deeper sites closer to downstream dams without current velocity and with abundant floating macrophytes. Both exotic species and habitat variables were significant correlates of endemic assemblage composition in the Raia stream and the abundance of M. salmoides > 150mm in TL was the best biotic predictor of endemic assemblage composition. The total variation in the community of endemic fish was partitioned into four components: (i) associated uniquely with exotic species - 12.6%, (ii) associated uniquely with habitat variables - 27.6%, (iii) associated both with exotic species and habitat variables - 14.5%, and (iv) that unexplained - 45.3%. A significant association of exotic species with the endemic fish community remained after accounting for the selected environmental variables and a strong (habitat) x (exotic species) interaction was indicated.  相似文献   

2.
I tested the effects of pool size and spatial position (upstream or downstream) on fish assemblage attributes in isolated and connected pools in an upland Oklahoma stream, United States. I hypothesized that there would be fundamental differences between assemblages in these two pool types due to the presence or absence of colonization opportunities. Analyses were carried out at three ecological scales: (1) the species richness of pool assemblages, (2) the species composition of pool assemblages, and (3) the responses of individual species. There were significant species-volume relationships for isolated and connected pools. However, the relationship was weaker and there were fewer species, on average, in isolated pools. For both pool types, species incidences were significantly nested such that species-poor pools tended to be subsets of species-rich pools, a common pattern that ultimately results from species-specific differences in colonization ability and/or extinction susceptibility. To examine the potential importance of these two processes in nestedness patterns in both pool types, I made the following two assumptions: (1) probability of extinction should decline with increasing pool size, and (2) probability of immigration should decline in an upstream direction (increasing isolation). When ordered by pool volume, only isolated pools were significantly nested suggesting that these assemblages were extinction-driven. When ordered by spatial position, only connected pools were significantly nested (more species downstream) suggesting that differences in species-specific dispersal abilities were important in structuring these assemblages. At the individual-species level, volume was a significant predictor of occurrence for three species in isolated pools. In connected pools, two species showed significant position effects, one species showed a pool volume effect, and one species showed pool volume and position effects. These results demonstrate that pool size and position within a watershed are important determinants of fish species assemblage structure, but their importance varies with the colonization potential of the pools. Isolated pool assemblages are similar to the presumed relaxed faunas of montane forest fragments and land bridge islands, but at much smaller space and time scales. Received: 6 December 1996 / Accepted: 10 December 1996  相似文献   

3.
Synopsis The composition and consistency of fish assemblages in 14 adjacent pools (6–120 m long) of a clear-water, limestone and gravel creek in midwestern U.S.A. were quantified in eight snorkeling surveys over 19 months, to establish a baseline of natural variation in the system at this scale. The fauna of the stream was dominated numerically by minnows (Cyprinidae), sunfish and black bass (Centrarchidae), and topminnows (Fundulidae). The pool fish fauna of the total 1 km reach (including all 14 pools) was highly consistent throughout the study, despite two major floods. Assemblages in individual pools generally were consistent, but there was more variation within pools than at the scale of the entire reach. Throughout the study, most individual pools remained within discrete subsets of the total occupied multivariate space in a principal components analysis based on fish species abundances. Sunfishes (Lepomis spp.) and bass (Micropterus spp.) were more consistent in their distribution among pools than were minnows (Cyprinidae) or a topminnow (Fundulus). There were 25 significant correlations in occurrence of species pairs among stream pools, out of 91 possible comparisons of the 14 most abundant taxa in the reach. Many pools contained assemblages either dominated by large centrarchids or by abundant cyprinids and juvenile centrarchids, but intermediate assemblages also were observed. The dynamics of distribution of fish species and fish assemblages among individual stream pools are likely influenced by a combination of species-specific behaviors and habitat selection, predator constraints on use of individual pools by small fishes, riffles as size-selective barriers to fish movements between pools, dispersal of young-of-the-year fishes, and abiotic phenomena like floods. Individual stream pools appear to be discrete habitat units for fishes, and do represent an appropriate scale for biologically meaningful studies of fish assemblages or their effects on streams.Department of Zoology, University of Oklahoma  相似文献   

4.
Peres-Neto PR 《Oecologia》2004,140(2):352-360
A number of studies at large scales have pointed out that abiotic factors and recolonization dynamics appear to be more important than biotic interactions in structuring stream-fish assemblages. In contrast, experimental and field studies at small scales show the importance of competition among stream fishes. However, given the highly variable nature of stream systems over time, competition may not be intense enough to generate large-scale complementary distributions via competitive exclusion. Complementary distribution is a recurrent pattern observed in fish communities across stream gradients, though it is not clear which instances of this pattern are due to competitive interactions and which to individual species requirements. In this study, I introduce a series of null models developed to provide a more robust evaluation of species associations by facilitating the distinction between different processes that may shape species distributions and community assembly. These null models were applied to test whether conspicuous patterns in species co-occurrences are more consistent with their differences in habitat use, morphological features and/or phylogenetic constraints, or with species interactions in fish communities in the streams of a watershed in eastern Brazil. I concluded that patterns in species co-occurrences within the studied system are driven by common species-habitat relationships and species interactions may not play a significant role in structuring these communities. I suggest that large-scale studies, where adequate designs and robust analytical tools are applied, can contribute substantially to understanding the importance of different types of processes in structuring stream-fish communities.  相似文献   

5.
1. Fish community structure depends on biotic interactions and abiotic variables. Abiotic variables appear to gain importance in highly variable freshwater systems, such as tropical wetlands where a marked seasonal hydroperiod (dry and wet seasons) modifies water quality and quantity, differentially affecting fish survival and, consequently, modifying species richness and abundance. 2. We evaluated the relationship between abiotic variables and fish community structure in variable (temporary) and stable (permanent) pools that were interconnected in a tropical wetland with marked annual dry and wet seasons. 3. All fish species were able to occupy any of the studied pools, but our results showed distinctive fish community structures in permanent and temporary pools. Community structure was related to temperature, depth, pH and macrophyte coverage. Total fish abundance in the wetland was negatively related to water depth and positively related to macrophyte coverage. 4. Null models of co‐occurrence indicated a non‐random pattern at the wetland scale and a random pattern within groups of pools with similar characteristics, suggesting that fish communities are structured according to habitat features. We conclude that seasonal abiotic variation and habitat characteristics in this highly variable pristine wetland play major roles in structuring fish communities.  相似文献   

6.
Spatial variation in the native fish community of the lower Guadiana basin (southern Iberia) was related to both biotic (abundance of exotic species) and environmental factors using canonical correspondence analysis, CCA. After choosing the best predictors among the environmental and biotic variables, we partitioned the total variation in native species abundances (18 species-size combinations by 44 sampling locations matrix) into that accounted for (1) solely by selected environmental variables, (2) solely by selected biotic variables, (3) by both environmental and biotic variables together, and (4) that unexplained. Of the 22 variables initially considered in the environmental CCA, only RIVER (dummy variable codifying sampling locations belonging to the main river), SALT (dummy variable codifying sampling locations belonging to tributaries that discharge to the brackish Guadiana), substrate heterogeneity, and macrobenthos abundance were selected as best predictors. In the biotic CCA, three species-size combinations were selected from the eight considered: Micropterus salmoides > 150 mm in total length (TL), Lepomis gibbosus > 100 mm in TL and Gambusia holbrooki. The total variation in the native fish community was partitioned into the following components: pure environmental (24.4%), pure biotic (12.4%), shared (9.2%) and unexplained (54.0%). There was a significant influence of exotic fish on native community variation after accounting for the effect of environmental factors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Predation risk can affect habitat selection by water column stream fish and crayfish, but little is known regarding effects of predation risk on habitat selection by benthic fish or assemblages of fish and crayfish. I used comparative studies and manipulative field experiments to determine whether, (1) habitat selection by stream fish and crayfish is affected by predation risk, and (2) benthic fish, water column fish, and crayfish differ in their habitat selection and response to predation risk. Snorkeling was used to observe fish and crayfish in, (1) unmanipulated stream pools with and without large smallmouth bass predators (Micropterus dolomieui >200 mm total length, TL) and (2) manipulated stream pools before and after addition of a single large smallmouth bass, to determine if prey size and presence of large fish predators affected habitat selection. Observations of microhabitat use were compared with microhabitat availability to determine microhabitat selection. Small fish (60–100 mm TL, except darters that were 30–100 mm TL) and crayfish (40–100 mm rostrum to telson length; TL) had significantly reduced densities in pools with large bass, whereas densities of large fish and crayfish (> 100 mm TL) did not differ significantly between pools with and without large bass. Small orangethroat darters (Etheostoma spectabile), northern crayfish (Orconectes virilis), and creek chubs (Semotilus atromaculatus) showed significantly greater densities in pools without large bass. The presence of large smallmouth bass did not significantly affect depths selected by fish and crayfish, except minnows, which were found significantly more often at medium depths when bass were present. Small minnows and large and small crayfish showed the greatest response to additions of bass to stream pools by moving away from bass locations and into shallow water. Small darters and sunfish showed an intermediate response, whereas large minnows showed no significant response to bass additions. Response to predation risk was dependent on prey size and species, with preferred prey, crayfish and small minnows, showing the greatest response. Small benthic fish, such as darters, are intermediate between small water column fish and crayfish and large water column fish in their risk of predation from large smallmouth bass.  相似文献   

9.
  1. Animals contribute significantly to nutrient cycling through excretion, but most studies consider their effects under relatively benign abiotic conditions. Disturbances such as drought may alter animals’ nutrient contributions through shifts in species composition and biomass. Headwater streams are particularly vulnerable to extreme climate events and thus might show rapid changes in stream biota and their ecosystem effects.
  2. We tested how biomass and subsequent ecosystem effects (nutrient cycling) of an intermittent prairie stream community changed during a drought. We quantified the biomass and contributions to nutrient cycling for assemblages comprising fishes, crayfish, and tadpoles in 12 isolated pools over 3 months encompassing the harshest drought on record for Kings Creek, KS, U.S.A. We predicted that macroconsumer biomass would decline with pool surface area and that differences in macroconsumer biomass and taxonomic composition would lead to different contributions of pool assemblages to nutrient cycling.
  3. The biomass of pool assemblages declined with decreasing pool size, a pattern apparently driven by mortality, emigration, or metamorphosis. We also observed a change in assemblage structure of drying pools during drought relative to pool size, shifting dominance toward species with more drought-resistant traits. Accordingly, assemblage nitrogen (N) excretion rates declined as pool biomass was reduced, leading to a 58% reduction in N available to epilithic biofilms. Phosphorus (P) excretion rates declined from June to July, but increased in August, as species with high P excretion rates maintained similar proportional biomass and biomass of a non-native fish increased. Molar N:P of pool assemblage excretion declined significantly throughout the drought and coincided with loss of southern redbelly dace (Chrosomus erythrogaster: Cyprinidae).
  4. Animal-mediated nutrient cycling was altered by the loss of biomass and stoichiometric traits of taxa that differed in their occurrences and ability to tolerate abiotic conditions during drought. Elevated availability of dissolved N in isolated pools may increase N uptake rates by biofilms during drought conditions, indicating the importance of N excreted by aggregated macroconsumers, especially those with unique stoichiometric traits. While the significance of shifts in the composition of freshwater communities to ecosystems is not entirely known, additional losses in ecosystem function and changes in community structure may follow episodes of severe drought.
  相似文献   

10.
11.
Summary 1. Natural aquatic communities or habitats cannot be fully replicated in the wild, so little is known about how initially identical communities might change over time, or the extent to which observed changes in community structure are caused by internal factors (such as interspecific interactions or traits of individual species) versus factors external to the local community (such as abiotic disturbances or invasions of new species).
2. We quantified changes in seven initially identical fish assemblages, in habitats that were as similar as possible, in seminatural artificial streams in a 388-day trial (May 1998 to May 1999), and compared the change to that in fish assemblages in small pools of a natural stream during a year. The experimental design excluded floods, droughts, immigration or emigration. The experimental fish communities diverged significantly in composition and exhibited dissimilar trajectories in multivariate species space. Divergence among the assemblages increased from May through August, but not thereafter.
3. Differences among the experimental assemblages were influenced by differences that developed during the year in algae cover and in potential predation (due to differential survival of sunfish among units).
4. In the natural stream, fish assemblages in small pools changed more than those in the experimental units, suggesting that in natural assemblages external factors exacerbated temporal variation.
5. Our finding that initially identical assemblages, isolated from most external factors, would diverge in the structure of fish assemblages over time suggests a lack of strong internal, deterministic controls in the assemblages, and that idiosyncratic or stochastic components (chance encounters among species; vagaries in changes in the local habitat) even within habitat patches can play an important role in assemblage structure in natural systems.  相似文献   

12.
The effects of population density, fish density, and dissolved oxygen on body condition of late-instar nymphs of Stenonema tripunctatum (Ephemeroptera, Heptageniidae) were investigated using nymphs sampled from isolated, upland stream pools over summer in central Arkansas, USA. All three factors exhibited high variation among pools. Body condition was negatively related to fish density, and positively related to dissolved oxygen (when included in the model). High fish densities may be related to low body condition because they cause reduced foraging or force earlier emergence at small body sizes. These results emphasize the combined effects of biotic and abiotic factors on body condition in mayflies, and support earlier findings that population density is a less-important factor.  相似文献   

13.
Synopsis Principal components analysis was performed on fish presence/absence data for 39 common fish species from 410 stream sites in Kansas. The analysis confirmed ten ecologically meaningful fish assemblages, based on species associations. Factor scores based on these assemblages were then clustered into six geographic areas or fish ecoregions. Canonical discriminant analysis identified environmental variables that distinguished the derived fish ecoregions. Mean annual runoff, mean annual growing season, and discharge appear most important. Mean width, mean depth, chloride concentration, water temperature, substrate type, gradient, and percent of pool habitat were less important. Correspondence exists between these fish ecoregions and the patterns of physiographic regions, river basins, geology, soil, and potential natural vegetation in Kansas. The multivariate statistical approach used to classify fish ecoregions should have considerable potential value for fish assessment and management purposes in areas other than the state of Kansas.  相似文献   

14.
1. Using an extensive data set from 18 river restoration projects in the lower mountain ranges of Germany and 5462 river reaches in their surroundings, we estimated the spatial extent of the regional fish species pool from which restored river reaches are colonised. 2. Restoration resulted in a marginally significant increase in fish species richness; however, restored reaches still deviated markedly from natural reference conditions. Nearly all (96.6%) species occurring in restored reaches were present in reaches within a distance of 5 km up‐ or downstream of the restored reach. 3. Species richness in restored reaches was correlated with species richness within a 5‐km species pool. This relationship was more pronounced for common than for rare fishes and applied to both the total number of fish species at the restored reach and the number of additional fish species that were not present at unrestored conditions. 4. The richness of the regional species pools was greatly impoverished. On average, only 50% of all species considered to represent natural reference assemblages were present. The limited success in establishing natural fish assemblages in restored reaches was attributed to spatial limitation (e.g. due to fragmentation) and an impoverished regional species pools from which restored reaches recruit. 5. We recommend that integrated river restoration management should consider not only the abiotic prerequisites of successful restorations, but also the structure and quality of the regional species pool.  相似文献   

15.
Where biological datasets are spatially limited, abiotic surrogates have been advocated to inform objective planning for Marine Protected Areas. However, this approach assumes close correlation between abiotic and biotic patterns. The Solitary Islands Marine Park, northern NSW, Australia, currently uses a habitat classification system (HCS) to assist with planning, but this is based only on data for reefs. We used Baited Remote Underwater Videos (BRUVs) to survey fish assemblages of unconsolidated substrata at different depths, distances from shore, and across an along-shore spatial scale of 10 s of km (2 transects) to examine how well the HCS works for this dominant habitat. We used multivariate regression modelling to examine the importance of these, and other environmental factors (backscatter intensity, fine-scale bathymetric variation and rugosity), in structuring fish assemblages. There were significant differences in fish assemblages across depths, distance from shore, and over the medium spatial scale of the study: together, these factors generated the optimum model in multivariate regression. However, marginal tests suggested that backscatter intensity, which itself is a surrogate for sediment type and hardness, might also influence fish assemblages and needs further investigation. Species richness was significantly different across all factors: however, total MaxN only differed significantly between locations. This study demonstrates that the pre-existing abiotic HCS only partially represents the range of fish assemblages of unconsolidated habitats in the region.  相似文献   

16.
The diversity and composition of drift invertebrate assemblages were evaluated along a longitudinal gradient of an altitudinal stream in southeastern Brazil. The main goal of this study was to evaluate the influence of seasonality, stream order, and some abiotic factors on invertebrate drift and the use of drifting invertebrate assemblages to assess aquatic invertebrate diversity. Drift samples were collected over a 24 h period using nets (open area of 0.08 m2; mesh 0.250 mm), partially submerged (60%) in the water column. Taxonomic richness, Pielou evenness (J), Shannon–Wiener diversity (H), and total density of drift invertebrate assemblages were used in unpaired t-tests, Kruskal–Wallis and stepwise multiple regression analysis. The results showed a high taxonomic richness of aquatic invertebrates, with 91 taxa found. Chironomidae and Ephemeroptera represented together c. 80% of the total density of drift organisms. The drift approach allowed the collection of new and rare taxa, besides the knowledge of pupae stage of several chironomid genera. Significant differences in the taxonomic richness and diversity of drift invertebrate assemblages were found between the rainy and dry periods, indicating a significant influence of seasonality. An increase in water flow and electrical conductivity were associated with the increase in the taxonomic richness and diversity in the rainy period. No significant differences were found among the other abiotic variables among the stream orders.  相似文献   

17.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

18.
Aim  To examine the roles of local and regional environmental variables and biotic interactions in determining the structure of local stream fish assemblages, and to compare results derived from analyses based on taxonomic and functional groups.
Location  Texas, USA.
Methods  Species abundance data were compiled for 157 stream fish assemblages in several river basins across Texas. Species were condensed into functional groups based on trophic and life-history characteristics. Local and regional environmental variables were either measured at each location or determined from scale maps and public-access data bases. The original taxonomic and functional group data sets were analysed using similarity indices, null models of co-occurrence, and direct and indirect ordination techniques. Results derived from taxonomic and functional group data sets are compared.
Results  Inferences regarding the relative roles of local and larger-scale factors in determining stream fish assemblage structure differ dramatically between analyses of taxonomic and functional groups. Taxonomic analyses suggest a prominent role of regional-scale environmental factors, and local assemblages sorted according to a biogeographic pattern. Functional group analyses suggest almost equal roles of factors representative of local and larger scales, and assemblages were distinguished by a habitat template irrespective of geographic region.
Main conclusions  The structure of local stream fish assemblages is determined ultimately by factors representing multiple scales, with the relative importance of each depending on the biological unit employed (species or functional groups). We suggest that analyses using functional groups can more directly infer ecological responses to environmental variation, and therefore may provide a more fruitful avenue for developing and testing ecological theory of community organization across biogeographic scales.  相似文献   

19.
Stelzer  Claus-Peter 《Hydrobiologia》2017,787(1):255-268
Peatland pools usually show a marked gradient regarding their minerotrophic (harder and less acidic waters) versus ombrotrophic (softer and more acidic waters) status, which appears to be crucial in structuring their planktonic food webs. In this study, we analyzed the effect of such habitat diversity in shaping bacterioplankton assemblages. The planktonic bacteria from five pools located in Rancho Hambre peat bog (Tierra del Fuego Island) were studied through morphological and cytometric approaches, over more than one seasonal cycle. The community was always dominated by small cocci with an average cell size of 0.27 × 0.36 µm. Bacterioplankton morphological structure and cytometric fingerprint were correlated (Mantel test: P < 0.001), both methods used to characterize bacterioplankton showed significant differences between minero- and ombrotrophic pools. Variation in bacterial assemblage structure was mainly explained by abiotic variables relevant in peatlands such as pH, total hardness, conductivity, concentration of inorganic nutrients, and concentration and quality of dissolved organic carbon. Notably, these relatively fast approaches detected similar landscape-driven ecological patterns as previous high-throughput sequencing molecular studies of prokaryotes from the same pools, promising to be useful screening tools for limnological surveys as well as for monitoring the response of bacterial assemblages to environmental changes in peatland ecosystems.  相似文献   

20.
The theory of traits (life‐history, ecological and biological traits) states that a species’ characteristics might enable its persistence and development in given environmental conditions. If environment is the major factor controlling functional assemblage structure, species with similar attributes are expected to inhabit a similar environment. This study uses trait states in 849 European riverine fish assemblages to analyze the influence of environment, phylogeny and biogeography on the functional structure of these assemblages. European fish assemblages were highly structured and two main syndromes (a suite of coevolved traits) were observed: 1) assemblages dominated by stenothermal intolerant individuals and 2) assemblages dominated by eurythermal, eurytopic and tolerant individuals. Temperature and stream physical structure were the two main environmental factors explaining the diversity of fish assemblage functional structures, while the influence of biogeographic factors was weak, once environment was taken into account. This suggests that, whatever the regional species pool, similar assemblage functional structures will be found in similar environmental conditions. The phylogenetic relatedness between species might also explain to some extent the associations between the species traits observed among European fish assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号