首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
Information about the relative importance of competitive or facilitative pollinator‐mediated interactions in a multi‐species context is limited. We studied interspecific pollen transfer (IPT) networks to evaluate quantity and quality effects of pollinator sharing among plant species on three high‐Andean communities at 1600, 1800 and 2000 m a.s.l. To estimate the sign of the effects (positive, neutral or negative), the relation between conspecific and heterospecific pollen deposited on stigmas was analysed with GLMMs. Network analyses showed that communities were characterised by the presence of pollen hub‐donors and receptors. We inferred that facilitative and neutral pollinator‐mediated interactions among plants prevailed over competition. Thus, the benefits from pollinator sharing seem to outweigh the costs (i.e. heterospecific deposition and conspecific pollen loss). The largest proportion of facilitated species was found at the highest elevation community, suggesting that under unfavourable conditions for the pollination service and at lower plant densities facilitation can be more common.  相似文献   

2.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

3.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Monodominant forests are characterized by the strong influence of a single species on the structure and diversity of the community. In the tropics, monodominant forests are rare exceptions within the generally highly diverse tropical forest biome. Some studies have shown that tree monodominance may be a transient state caused by successional and demographic variation among species over time. Working in a Brosimum rubescens Taub. (Moraceae) monodominant forest at the southern edge of Amazonia, we tested the hypotheses that local-scale variation in intra- and interspecific spatial patterns of dominant tree species is affected by i) demographic rates of recruitment and mortality following severe droughts, ii) local variation in edaphic properties, and iii) occupation of species in the vertical layer of the forest. We quantified intra- and interspecific spatial patterns and edaphic associations of the five most abundant species using aggregation and association distance indices, and examined changes over time. We found some support for all hypotheses. Thus, intra- and interspecific spatial patterns of most species varied over time, principally after severe drought, emphasizing species-level variability and their interactions in sensitivity to this disturbance, even as B. rubescens monodominance was maintained. While positive and negative spatial associations with edaphic properties provide evidence of habitat specialization, the absence of negative spatial associations of B. rubescens with edaphic properties indicates that this species experiences little environmental restriction, and this may be one of the factors that explain its monodominance. Spatial repulsion and attraction between species in the same and in different vertical layers, respectively, indicates niche overlap and differentiation, while changes over time indicate that the relationships between species are dynamic and affected by drought disturbance.  相似文献   

5.
Pollination is thought to be under positive density‐dependence, destabilising plant coexistence by conferring fitness disadvantages to rare species. Such disadvantage is exacerbated by interspecific competition but can be mitigated by facilitation and intraspecific competition. However, pollinator scarcity should enhance intraspecific plant competition and impose disadvantage on common over rare species (negative density‐dependence, NDD). We assessed pollination proxies (visitation rate, pollen receipt, pollen tubes) in a generalised plant community and related them to conspecific and heterospecific density, expecting NDD and interspecific facilitation due to the natural pollinator scarcity. Contrary to usual expectations, all proxies indicated strong intraspecific competition for common plants. Moreover interspecific facilitation prevailed and was stronger for rare than for common plants. Both NDD and interspecific facilitation were modulated by specialisation, floral display and pollinator group. The combination of intraspecific competition and interspecific facilitation fosters plant coexistence, suggesting that pollination can be a niche axis maintaining plant diversity.  相似文献   

6.
Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.  相似文献   

7.
A plant species immigrating into a community may experience a rarity disadvantage due to competition for the services of pollinators. These negative reproductive interactions have the potential to lead to competitive displacement or exclusion of a species from a site. In this study, we used one‐ and two‐species arrays of potted plants to test for density and frequency dependence in pollinator‐mediated and above‐ground intraspecific and interspecific competition between two species of Limnanthes that have overlapping ranges, but rarely occur in close sympatry. There were asymmetric competitive effects; the species responded differently to their frequency within 16‐plant replacement series arrays. Limnanthes douglasii rosea experienced stronger reductions in lifetime and per‐flower fertility, likely due to pollinator‐mediated competition with Limnanthes alba. This effect may be linked to asymmetrical competition through heterospecific pollen transfer. This study demonstrates that pollinator‐mediated competition may discourage establishment of L. d. rosea in sites already occupied by its congener.  相似文献   

8.
The generalization–specialization continuum exhibited in pollination interactions currently receives much attention. It is well-known that the pollinator assemblage of particular species varies temporally and spatially, and therefore the ecological generalization on pollinators may be a contextual attribute. However, the factors causing such variation and its ecological and evolutionary consequences are still poorly understood. This variation can be caused by spatial or temporal variation in the pollinator community, but also by variation in the plant community. Here, we examined how the floral neighbourhood influenced the generalization on pollinators and the composition of pollinators of six plant species differing in generalization levels and main pollinators. The diversity, identity and density of floral species affected both the level of generalization on pollinators and the composition of visitors of particular plant species. Although the relationships to floral neighbourhood varied considerably among species, generalization level and visitation by uncommon pollinators generally increased with floral diversity and richness. The generalization level of the neighbourhood was negatively related to the generalization level of the focal species in two species. The number of flowers of the pollinator-sharing species and the number of flowers of the focal species had different effects on the composition of visits in different species; attributable to differences in facilitation/competition for pollinator attraction. We propose that an important ecological implication of our results is that variation in species interactions caused by the pollination context may result in increased community stability. The main evolutionary implication of our results is that selection on flower and pollinator traits may depend, to an unknown extent, on the composition of the co-flowering plant community.  相似文献   

9.
Vigorous discussion of the degree of specialization in pollination interactions, combined with advances in the analysis of complex networks, has revitalized the study of entire plant–pollinator communities. Noticeably rare, however, are attempts to quantify temporal variation in the structure of plant–pollinator networks, and to determine whether the status of species as specialists or generalists is stable. Here we show that network structure varied through time in a montane meadow community from southern California, USA, in that pollinator species did not form the same links with plant species across years. Furthermore, composition of the generalized core group of species in the network varied among summers, as did the identity of those species involved in relationships that appeared to be reciprocally specialized within any one summer. These differences appear to be related to severe drought conditions experienced in the second summer of the 3 year study. In contrast to this variation, the pollinator community remained similarly highly nested in all three summers, even though species were packed into the nested matrix differently from year to year. These results suggest that plant–pollinator networks vary in detail through time, while retaining some basic topological properties. This dynamic aspect of community‐scale interactions has implications for both ecological and evolutionary inferences about pollination mutualisms.  相似文献   

10.
de Jager ML  Dreyer LL  Ellis AG 《Oecologia》2011,166(2):543-553
The co-occurrence of plant species within a community is influenced by local deterministic or neutral processes as well as historical regional processes. Floral trait distributions of co-flowering species that share pollinators may reflect the impact of pollinator preference and constancy on their assembly within local communities. While pollinator sharing may lead to increased visitation rates for species with similar flowers, the receipt of foreign pollen via interspecific pollinator movements can decrease seed set. We investigated the pattern of community flower colour assembly as perceived by native honeybee pollinators within 24 local assemblages of co-flowering Oxalis species within the Greater Cape Floristic Region, South Africa. To explore the influence of pollinators on trait assembly, we assessed the impact of colour similarity on pollinator choices and the cost of heterospecific pollen receipt. We show that flower colour is significantly clustered within Oxalis communities and that this is not due to historical constraint, as flower colour is evolutionarily labile within Oxalis and communities are randomly structured with respect to phylogeny. Pollinator observations reveal that the likelihood of pollinators switching between co-flowering species is low and increases with flower colour similarity. Interspecific hand pollination significantly reduced seed set in the four Oxalis species we investigated, and all were dependant on pollinators for reproduction. Together these results imply that flower colour similarity carries a potential fitness cost. However, pollinators were highly flower constant, and remained so despite the extreme similarity of flower colour as perceived by honeybees. This suggests that other floral traits facilitate discrimination between similarly coloured species, thereby likely resulting in a low incidence of interspecific pollen transfer (IPT). If colour similarity promotes pollinator attraction at the community level, the observed clustering of flower colour within communities might result from indirect facilitative interactions.  相似文献   

11.
le Roux PC  McGeoch MA 《Oecologia》2008,155(4):831-844
The stress–gradient hypothesis predicts that the intensity of interspecific positive interactions increases along environmental severity (i.e. stress and disturbance) gradients faster than the intensity of negative interactions. This study is the first to test if the stress–gradient hypothesis is supported for a location in the climatically extreme and species-poor sub-Antarctic. To do so, we investigate the fine-scale spatial distribution of plant species across altitude- and aspect-related abiotic severity gradients on a scoria cone on Marion Island. A clear altitudinal severity gradient was observed across the scoria cone, with lower temperatures, stronger winds and greater soil movement at higher altitudes. The altitudinal severity gradient was matched by stronger interspecific spatial association between the four dominant species at higher altitudes and in areas of lower vegetation cover. This suggests that, relative to the intensity of competition, the intensity of facilitation is greater under more severe conditions, supporting the stress–gradient hypothesis at the community level (i.e. for multiple pairs of species) and corroborating its usefulness for predicting variation in plant interactions at high latitudes and altitudes. Furthermore, the directional intraspecific aggregation and interspecific association plant cover patterns found within the gradient suggest that protection from the prevailing wind and from burial by loose substrate are the dominant facilitative mechanisms. Thus, plants benefit from the presence of neighbours when they provide shelter and substrate stability, and the relative intensity of this positive interaction is greatest at higher altitudes, and varies between species pairs. This study, therefore, not only provides support for the stress–gradient hypothesis in the sub-Antarctic, but also demonstrates fine-scale directional spatial patterns between multiple species nested within the severity gradient. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Although the evolution and diversification of flowers is often attributed to pollinator-mediated selection, interactions between co-occurring plant species can alter patterns of selection mediated by pollinators and other agents. The extent to which both floral density and congeneric species richness affect patterns of net and pollinator-mediated selection on multiple co-occurring species in a community is unknown and is likely to depend on whether co-occurring plants experience competition or facilitation for reproduction. We conducted an observational study of selection on four species of Clarkia (Onagraceae) and tested for pollinator-mediated selection on two Clarkia species in communities differing in congeneric species richness and local floral density. When selection varied with community context, selection was generally stronger in communities with fewer species, where local conspecific floral density was higher, and where local heterospecific floral density was lower. These patterns suggest that intraspecific competition at high densities and interspecific competition at low densities may affect the evolution of floral traits. However, selection on floral traits was not pollinator mediated in Clarkia cylindrica or Clarkia xantiana, despite variation in pollinator visitation and the extent of pollen limitation across communities for C. cylindrica. As such, interactions between co-occurring species may alter patterns of selection mediated by abiotic agents of selection.  相似文献   

13.
The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant–pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant–pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume–grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant–pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant–pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.  相似文献   

14.
浙江江山公益林物种种间关系及CCA排序   总被引:3,自引:0,他引:3  
利用浙江省江山市80个公益林固定小班监测数据,基于生态位理论、种间联结、CCA排序方法对研究区内群落优势种种间关系及其与环境的关系进行研究。结果表明:江山市公益林群落中杉木、檵木、紫萁分别在乔木、灌木、草本层中占优势地位;石栎与青冈、隔药柃与山苍子、蕨与海金沙的生态位重叠指数值分别在乔、灌、草本层中最大;而CCA协变量矩阵偏典范对应分析说明物种分布主要受海拔、坡度、坡向(光照强度)以及腐殖质厚度的影响,总体上可以对89.44%的环境因子进行解释。并且还表明,生态位宽度较大的物种其生态位重叠值较大,并在CCA排序图物种集中区分布。反之,生态位重叠较小,在CCA排序图中将偏离物种集中区;除此之外,在CCA排序图上,物种间的距离与其生态位重叠值的大小及种间联结均有密切的关联,若未存在显著的联结性,随物种间的生态位重叠值越高,其在CCA排序上的距离越近,若存在显著联结性,则正相关缩小距离,负相关拉大距离。  相似文献   

15.
Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant–pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant–pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.  相似文献   

16.
Within a community, the abundance of any given species depends in large part on a network of direct and indirect, positive and negative interactions with other species, including shared enemies. In communities where experimental manipulations are often impossible (e.g., parasite communities), census data can be used to evaluate the strength or frequency of positive and negative associations among species. In ectoparasite communities, competitive associations can arise because of limited space or food, but facilitative associations can also exist if one species suppresses host immune defenses. In addition, positive associations among parasites could arise merely due to shared preferences for the same host, without any interaction going on. We used census data from 28 regional surveys of gamasid mites parasitic on small mammals throughout the Palaearctic, to assess how the abundance of individual mite species is influenced by the abundance and diversity of other mite species on the same host. After controlling for several confounding variables, the abundance of individual mite species was generally positively correlated with the combined abundances of all other mite species in the community. This trend was confirmed by meta-analysis of the results obtained for separate mite species. In contrast, there were generally no consistent relationships between the abundance of individual mite species and either the species richness or taxonomic diversity of the community in which they occur. These patterns were independent of mite feeding mode. Our results indicate either that synergistic facilitative interactions among mites increase the host’s susceptibility to further attacks (e.g., via immunosuppression) and lead to different species all having increased abundance on the same host, or that certain characteristics make some host species preferred habitats for many parasite species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species‐specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.  相似文献   

18.
Trait‐based theories of biodiversity consider interspecific tradeoffs among species‐specific traits as prerequisites to maintaining community evenness, a component of species diversity. Such tradeoffs are commonly observed in plant communities, particularly in relation to traits associated with resistance to herbivory. Indeed, global experiments show that interspecific tradeoffs are common between plant defense and growth or competitive ability; however, the positive effects of herbivory on plant diversity predicted by theories with trait‐based tradeoffs are far less commonly observed. Moreover, both the overall and relative importance of these tradeoffs in promoting plant diversity are not well known. To disentangle the relationships among growth, competition, and defense in relation to plant community evenness, we built a model that describes the effects of a shared herbivore on two plant species with the potential to differ in each of these traits. While tradeoffs between plant defense and growth or competitive ability can increase plant diversity via evenness, this is not always the case nor is it a requirement for increased diversity. Herbivores may increase plant diversity even in the absence of defensive tradeoffs, preferentially consuming apparently maladapted species, by limiting the negative effects of interspecific interactions. Therefore, the importance of defensive tradeoffs in increasing diversity may not be as important, or as straightforward, as previously hypothesized.  相似文献   

19.

Questions

Plant community composition can be influenced by multiple biotic, abiotic, and stochastic factors acting on the local species pool to determine their establishment success and abundance and subsequently the diversity of the community. We asked if the influences of biotic interactions on the composition of plant species in communities, as indicated by patterns of plant species spatial associations (independent, positive or negative), vary across a productivity gradient within a single ecosystem type. Do dominant species of communities show spatial patterning suggestive of competitive interactions with interspecific neighbors? Do species that span multiple community types exhibit the same heterospecific interactions with neighbours in each community?

Location

Three alpine communities in the southern Rocky Mountains.

Methods

We measured the occurrence of species in a 1‐cm spatial grid within 2 m × 2 m plots to determine the spatial patterns of species pairs in the three communities. A null model of independent species spatial arrangements was used to determine whether species pairs were positively, negatively or independently associated, and how these patterns differed among the communities across the gradient of resource supply and environmental stress.

Results

Positive associations, indicative of facilitation between species, were most common in the most resource‐poor and least productive community. However negative associations, suggestive of competitive interactions among species, were not more common in the two more resource‐rich, productive communities. The dominant species of these communities did exhibit higher negative than positive associations with neighbours relative to positive patterning. Independent interspecific patterning was equally common relative to positive and negative patterns in all communities. Species that previously were shown to either facilitate other species or compete with neighbours exhibited spatial patterning consistent with the earlier experimental work.

Conclusions

A large number of species exhibit a lack of net biotic interactions, and stochastic factors appear to be as important as competition and facilitation in shaping the structure of the three alpine plant communities we studied.
  相似文献   

20.
Laura Burkle  Rebecca Irwin 《Oikos》2009,118(12):1816-1829
Striking changes in food web structure occur with alterations in resource supply. Like predator–prey interactions, many mutualisms are also consumer–resource interactions. However, no studies have explored how the structure of plant–pollinator networks may be affected by nutrient enrichment. For three years, we enriched plots of subalpine plant communities with nitrogen and observed subsequent effects on plant–pollinator network structure. Although nitrogen enrichment affects floral abundance and rates of pollinator visitation, we found no effects of nitrogen enrichment on the core group of generalist plants and pollinators or on plant–pollinator network structure parameters, such as network topology (the identity and frequency of interactions) and the degree of nestedness. However, individual plant and pollinator taxa were packed into the nested networks differently among nitrogen treatments. In particular, pollinators visited different numbers and types of plants in the nested networks, suggesting weak, widespread effects of nitrogen addition on individual taxa. Independent of nitrogen enrichment, there were large interannual differences in network structure and interactions, due to species turnover among years and flexibility in interacting with new partners. These data suggest that the community structure of small‐scale mutualistic networks may be relatively robust to short‐term bottom–up changes in the resource supply, but sensitive to variation in the opportunistic behavior and turnover of plant and pollinator species among years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号