首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4+CD25highFOXP3+ Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/expansion/and activation of human Treg.

Methodology/Principal Findings

TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4+CD25neg T cells into CD4+CD25highFOXP3+ Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-β1, CTLA-4, granzyme B and perforin expression (p<0.05) and mediated stronger suppression of responder cell (RC) proliferation (p<0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-β1 and/or IL-10 significantly inhibited TMV ability to expand Treg.

Conclusions/Significance

This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in supporting immune evasion of human cancers.  相似文献   

2.

Background

CD4+CD25+FOXP3+ Regulatory T cells (Treg) play a central role in the immune balance to prevent autoimmune disease. One outstanding question is how Tregs suppress effector immune responses in human. Experiments in mice demonstrated that Treg restrict effector T cell (Teff) responses by deprivation of the growth factor IL-2 through Treg consumption, resulting in apoptosis of Teff.

Principal Findings

In this study we investigated the relevance of Teff apoptosis induction to human Treg function. To this end, we studied naturally occurring Treg (nTreg) from peripheral blood of healthy donors, and, to investigate Treg function in inflammation in vivo, Treg from synovial fluid of Juvenile Idiopathic Arthritis (JIA) patients (SF-Treg). Both nTreg and SF-Treg suppress Teff proliferation and cytokine production efficiently as predicted. However, in contrast with murine Treg, neither nTreg nor SF-Treg induce apoptosis in Teff. Furthermore, exogenously supplied IL-2 and IL-7 reverse suppression, but do not influence apoptosis of Teff.

Significance

Our functional data here support that Treg are excellent clinical targets to counteract autoimmune diseases. For optimal functional outcome in human clinical trials, future work should focus on the ability of Treg to suppress proliferation and cytokine production of Teff, rather than induction of Teff apoptosis.  相似文献   

3.

Background

Regulatory T-cells (Tregs), characterized as CD4+CD25hi T-cells expressing FOXP3, play a crucial role in controlling healthy immune development during early immune maturation. Recently, FOXP3 demethylation was suggested to be a novel marker for natural Tregs in adults. In cord blood, the role and function of Tregs and its demethylation is poorly understood. We assessed FOXP3 demethylation in cord blood in relation to previously used Treg markers such as CD4+CD25hi, FOXP3 mRNA, protein expression, and suppressive Treg function.

Methodology

Cord blood mononuclear cells (CBMC) were isolated from 70 healthy neonates, stimulated for 3 days with the microbial stimulus lipid A (LpA), and allergen Dermatophagoides pteronyssinus (Derp1). Tregs (CD4+CD25hi, intracellular, mRNA FOXP3 expression, isolated cells), DNA methylation of the FOXP3-locus and suppressive Treg function were assessed.

Principal Findings

Demethylation of FOXP3 in whole blood was specific for isolated CD4+CD25hi Tregs. Demethylation of FOXP3 was positively correlated with unstimulated and LpA-stimulated FOXP3 mRNA-expression (p≤0.05), and CD4+CD25hi T-cells (p≤0.03). Importantly, increased FOXP3 demethylation correlated with more efficient suppressive capacity of Tregs (r = 0.72, p = 0.005). Furthermore, FOXP3 demethylation was positively correlated with Th2 cytokines (IL-5, IL-13) following LpA-stimulation (p = 0.006/0.04), with Th2 and IL-17 following Derp1+LpA-stimulations (p≤0.009), but not Th1 cytokines (IFN-γ).

Conclusions

FOXP3 demethylation reliable quantifies Tregs in cord blood. FOXP3 demethylation corresponds well with the suppressive potential of Tregs. The resulting strict correlation with functionally suppressive Tregs and the relative ease of measurement render it into a valuable novel marker for large field studies assessing Tregs as qualitative marker indicative of functional activity.  相似文献   

4.

Background

Understanding the role of different classes of T cells during HIV infection is critical to determining which responses correlate with protective immunity. To date, it is unclear whether alterations in regulatory T cell (Treg) function are contributory to progression of HIV infection.

Methodology

FOXP3 expression was measured by both qRT-PCR and by flow cytometry in HIV-infected individuals and uninfected controls together with expression of CD25, GITR and CTLA-4. Cultured peripheral blood mononuclear cells were stimulated with anti-CD3 and cell proliferation was assessed by CFSE dilution.

Principal Findings

HIV infected individuals had significantly higher frequencies of CD4+FOXP3+ T cells (median of 8.11%; range 1.33%–26.27%) than healthy controls (median 3.72%; range 1.3–7.5%; P = 0.002), despite having lower absolute counts of CD4+FOXP3+ T cells. There was a significant positive correlation between the frequency of CD4+FOXP3+ T cells and viral load (rho = 0.593 P = 0.003) and a significant negative correlation with CD4 count (rho = −0.423 P = 0.044). 48% of our patients had CD4 counts below 200 cells/µl and these patients showed a marked elevation of FOXP3 percentage (median 10% range 4.07%–26.27%). Assessing the mechanism of increased FOXP3 frequency, we found that the high FOXP3 levels noted in HIV infected individuals dropped rapidly in unstimulated culture conditions but could be restimulated by T cell receptor stimulation. This suggests that the high FOXP3 expression in HIV infected patients is likely due to FOXP3 upregulation by individual CD4+ T cells following antigenic or other stimulation.

Conclusions/Significance

FOXP3 expression in the CD4+ T cell population is a marker of severity of HIV infection and a potential prognostic marker of disease progression.  相似文献   

5.

Objective

Regulatory T cells (Treg) play a critical role in the prevention of autoimmunity, and the suppressive activity of these cells is impaired in rheumatoid arthritis (RA). The aim of the present study was to investigate function and properties of Treg of RA patients in response to purified polysaccharide glucuronoxylomannogalactan (GXMGal).

Methods

Flow cytometry and western blot analysis were used to investigate the frequency, function and properties of Treg cells.

Results

GXMGal was able to: i) induce strong increase of FOXP3 on CD4+ T cells without affecting the number of CD4+CD25+FOXP3+ Treg cells with parallel increase in the percentage of non-conventional CD4+CD25FOXP3+ Treg cells; ii) increase intracellular levels of TGF-β1 in CD4+CD25FOXP3+ Treg cells and of IL-10 in both CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells; iii) enhance the suppressive activity of CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells in terms of inhibition of effector T cell activity and increased secretion of IL-10; iv) decrease Th1 response as demonstrated by inhibition of T-bet activation and down-regulation of IFN-γ and IL-12p70 production; v) decrease Th17 differentiation by down-regulating pSTAT3 activation and IL-17A, IL-23, IL-21, IL-22 and IL-6 production.

Conclusion

These data show that GXMGal improves Treg functions and increases the number and function of CD4+CD25FOXP3+ Treg cells of RA patients. It is suggested that GXMGal may be potentially useful for restoring impaired Treg functions in autoimmune disorders and for developing Treg cell-based strategies for the treatment of these diseases.  相似文献   

6.

Background

Colorectal cancer usually gives rise to a specific anti-tumor immune response, but for unknown reasons the resulting immunity is not able to clear the tumor. Recruitment of activated effector lymphocytes to the tumor is important for efficient anti-tumor responses, while the presence of regulatory T cells (Treg) down-modulate tumor-specific immunity. We therefore aimed to determine homing mechanisms and activation stage of Treg and effector T cell infiltrating colon tumors compared to cells from the unaffected mucosa in patients suffering from colon adenocarcinoma.

Methodology/Principal Findings

Lymphocytes were isolated from unaffected and tumor mucosa from patients with colon adenocarcinoma, and flow cytometry, immunohistochemistry, and quantitative PCR was used to investigate the homing mechanisms and activation stage of infiltrating Treg and conventional lymphocytes. We detected significantly higher frequencies of CD25highFOXP3+CD127low putative Treg in tumors than unaffected mucosa, which had a complete demethylation in the FOXP3 promotor. Tumor-associated Treg had a high expression of CTLA-4, and some appeared to be antigen experienced effector/memory cells based on their expression of αEβ7 (CD103). There were also significantly fewer activated T cells and more CTLA-4+ conventional T cells susceptible to immune regulation in the tumor-associated mucosa. In contrast, CD8+granzyme B+ putative cytotoxic cells were efficiently recruited to the tumors. The frequencies of cells expressing α4β7 and the Th1 associated chemokine receptor CXCR3 were significantly decreased among CD4+ T cells in the tumor, while frequencies of CD4+CCR4+ lymphocytes were significantly increased.

Conclusions/Significance

This study shows that CCR4+CTLA4hi Treg accumulate in colon tumors, while the frequencies of activated conventional Th1 type T cells are decreased. The altered lymphocyte composition in colon tumors will probably diminish the ability of the immune system to effectively attack tumor cells, and reducing the Treg activity is an important challenge for future immunotherapy protocols.  相似文献   

7.

Background

In HIV infection, uncontrolled immune activation and disease progression is attributed to declining CD4+CD25+FoxP3+ regulatory T-cell (Treg) numbers. However, qualitative aspects of Treg function in HIV infection, specifically the balance between Treg cell suppressive potency versus suppressibility of effector cells, remain poorly understood. This report addresses this issue.

Methodology/Principal Findings

A classic suppression assay to measure CD4+CD45RO+CD25hi Treg cells to suppress the proliferation of CD4+CD45RO+CD25− effectors cells (E) following CD3/CD28 polyclonal stimulation was employed to compare the suppressive ability of healthy volunteers (N = 27) and chronic, asymptomatic, treatment naïve, HIV-infected subjects (N = 14). HIV-infected subjects displayed significantly elevated Treg-mediated suppression compared to healthy volunteers (p = 0.0047). Cross-over studies comparing Treg cell potency from HIV-infected versus control subjects to suppress the proliferation of a given population of allogeneic effector cells demonstrated increased sensitivity of CD4+CD25− effector cells from HIV-infected subjects to be suppressed, associated with reduced production of the Treg counter-regulatory cytokine, IL-17, rather than an increase in the suppressive potential of their CD4+CD25+ Treg cells. However, compared to controls, HIV+ subjects had significantly fewer absolute numbers of circulating CD4+CD25+FoxP3+ Treg cells. In vitro studies highlighted that one mechanism for this loss could be the preferential infection of Treg cells by HIV.

Conclusions/Significance

Together, novel data is provided to support the contention that elevated Treg-mediated suppression may be a natural host response to HIV infection  相似文献   

8.
9.

Background

The immunosuppressive drug rapamycin (RAPA) promotes the expansion of CD4+ CD25highFoxp3+ regulatory T cells via mechanisms that remain unknown. Here, we studied expansion, IL-2R-γ chain signaling, survival pathways and resistance to apoptosis in human Treg responding to RAPA.

Methodology/Principal Findings

CD4+CD25+ and CD4+CD25neg T cells were isolated from PBMC of normal controls (n = 21) using AutoMACS. These T cell subsets were cultured in the presence of anti-CD3/CD28 antibodies and 1000 IU/mL IL-2 for 3 to 6 weeks. RAPA (1–100 nM) was added to half of the cultures. After harvest, the cell phenotype, signaling via the PI3K/mTOR and STAT pathways, expression of survival proteins and Annexin V binding were determined and compared to values obtained with freshly-separated CD4+CD25high and CD4+CD25neg T cells. Suppressor function was tested in co-cultures with autologous CFSE-labeled CD4+CD25neg or CD8+CD25neg T-cell responders. The frequency and suppressor activity of Treg were increased after culture of CD4+CD25+ T cells in the presence of 1–100 nM RAPA (p<0.001). RAPA-expanded Treg were largely CD4+CD25highFoxp3+ cells and were resistant to apoptosis, while CD4+CD25neg T cells were sensitive. Only Treg upregulated anti-apoptotic and down-regulated pro-apoptotic proteins. Treg expressed higher levels of the PTEN protein than CD4+CD25neg cells. Activated Treg±RAPA preferentially phosphorylated STAT5 and STAT3 and did not utilize the PI3K/mTOR pathway.

Conclusions/Significance

RAPA favors Treg expansion and survival by differentially regulating signaling, proliferation and sensitivity to apoptosis of human effector T cells and Treg after TCR/IL-2 activation.  相似文献   

10.

Objective

Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease.

Methods

Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot.

Results

We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154.

Conclusion

Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.  相似文献   

11.

Purpose

FOXP3+ regulatory T cells (Treg) play an essential role in modulating host responses to tumors and infections. The role of these cells in the pathogenesis of MALT lymphomas remains unknown. The aims of the study were to quantify the number of infiltrating FOXP3+ and CD3+ cells in patients with gastric MALT lymphoma at diagnosis and to study kinetics of these cells and CD20+ tumor cells after treatment and during long-term follow-up.

Methods

FOXP3+, CD3+ and CD20+ cells were analyzed by immunohistochemistry and the number of cells was quantified using a micrometric ocular. Samples of 35 patients with gastric MALT lymphoma at diagnosis and after treatment were included. Diagnostic samples were compared to 19 cases of chronic gastritis and diffuse large B-cell lymphoma (DLBCL) of the stomach.

Results

The median number of FOXP3+ infiltrating cells was higher (27 cells/cm2) in gastric MALT patients than in DLBCL (10 cells; p = 0.162) but similar to chronic gastritis (20 cells; p = 0.605). No characteristic or specific distribution pattern of infiltrating FOXP3+ cells was found. Gastric MALT lymphoma patients responding to bacterial eradication therapy had higher number of FOXP3+ cells at study entry. Kinetics of both infiltrating FOXP3+ cells and tumor CD20+ cells were strongly dependent on the treatment administered.

Discussion

Gastric MALT lymphomas have a number of Treg cells more similar to chronic gastritis than to DLBCL. Patients with higher number of tumor infiltrating FOXP3+ cells at study entry seem to have better response to antibiotics. Kinetics of Treg and tumor cells are influenced by type of treatment.  相似文献   

12.
13.

Background

CD25, a component of the IL-2 receptor, is important in T cell proliferation, activation induced cell death, as well as the actions of both regulatory (Treg) and effector (Teff) T cells. Recent genome wide association studies have implicated the CD25 locus as an important region for genetic susceptibility to a number of autoimmune disorders, with serum levels of soluble CD25 receptor (sCD25) serving as a potential phenotypic marker for this association. However, the functional impact of CD25 cleavage, as well as the influence of sCD25 on immunoregulatory activities, remain largely unknown and form the basis of this effort.

Methodology/Principal Findings

The generation of sCD25 by Treg (CD4+CD25+) and Teff (CD4+CD25) cells was examined during in vitro suppression assays, efforts that demonstrated constitutive and stable surface CD25 expression on Treg throughout the period of in vitro assessment. In contrast, Teff cells increased CD25 expression during the process of in vitro suppression, with supernatant sCD25 levels correlating to the amount of cellular proliferation. Interestingly, under serum-free conditions, Tregs partially lost their characteristic anergic and suppressive properties. sCD25 supplementation at physiological concentrations to serum free in vitro suppression assays reduced Teff proliferation without specifically influencing suppression. Indeed, sCD25 production within these cultures correlated with cell death.

Conclusions/Significance

These results support the notion that sCD25 functions as both a surrogate marker of T cell activation as well as an indicator of subsequent cellular death. In addition, the role of CD25 in immunomodulation is likely dependent on the local inflammatory milieu, with molecules capable of modulating surface CD25 expression playing a key role in defining immune responsiveness.  相似文献   

14.

Background

Regulatory T cells (Tregs) are essential in the control of tolerance. Evidence implicates Tregs in human autoimmune conditions. Here we investigated their role in systemic sclerosis (SSc).

Methods/Principal Findings

Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 20) or diffuse cutaneous SSc (dcSSc, n = 48). Further subdivision was made between early dcSSc (n = 24) and late dcSSc (n = 24) based upon the duration of disease. 26 controls were studied for comparison. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, FoxP3, CD127, CD62L, GITR, CD69 using flow cytometry. T cell suppression assays were performed using sorted CD4CD25highCD127- and CD4CD25lowCD127high and CD3+ cells. Suppressive function was correlated with CD69 surface expression and TGFβ secretion/expression. The frequency of CD4+CD25+ and CD25highFoxP3highCD127neg T cells was highly increased in all SSc subgroups. Although the expression of CD25 and GITR was comparable between groups, expression of CD62L and CD69 was dramatically lower in SSc patients, which correlated with a diminished suppressive function. Co-incubation of Tregs from healthy donors with plasma from SSc patients fully abrogated suppressive activity. Activation of Tregs from healthy donors or SSc patients with PHA significantly up regulated CD69 expression that could be inhibited by SSc plasma.

Conclusions/Significance

These results indicate that soluble factors in SSc plasma inhibit Treg function specifically that is associated with altered Treg CD69 and TGFβ expression. These data suggest that a defective Treg function may underlie the immune dysfunction in systemic sclerosis.  相似文献   

15.

Background

Leprosy is a chronic disease, caused by Mycobacterium leprae, which poses a serious public health problem worldwide. Its high incidence in people under 15 years old in Ceará state, Brazil, reflects the difficulty of its control. The spectrum of clinical manifestations is associated with the immune response developed, with the Th1 and Th2 responses being related to the paucibacillary and multibacillary forms, respectively. Regulatory T cells (Treg), which can suppress Th1 and Th2 response, have received special attention in the literature and have been associated with development of chronic infections. However, their role in leprosy in individuals under 15 years old has not yet been elucidated. We evaluated the frequency of CD4+/CD8+CD25highFOXP3+ and CD4+/CD8+CD25highFOXP3high cells in leprosy patients and household contacts, in both cases under 15 years old.

Methodology/Principal Findings

PBMC from 12 patients and 17 contacts were cultured for 72 hours with anti-CD3 and anti-CD28 (activators) or with activators associated with total sonicated fraction of M. leprae. After culture, the frequency of CD4+/CD8+ Treg was identified by flow cytometry. Cells stimulated by activators and antigen from multibacillary patients showed Treg frequencies almost two times that of the contacts: CD4+FOXP3+ (21.93±8.43 vs. 13.79±8.19%, p = 0.0500), CD4+FOXP3high (10.33±5.69 vs. 5.57±4.03%, p = 0.0362), CD8+FOXP3+ (13.88±9.19 vs. 6.18±5.56%, p = 0.0230) and CD8+FOXP3high (5.36±4.17 vs. 2.23±2.68%, p = 0.0461). Furthermore, the mean fluorescence intensity of FOXP3 in Treg was higher in multibacillary patients than in the contacts. Interestingly, there was a positive correlation of the bacillary index and number of lesions with the frequency of all Treg evaluated in patients.

Conclusions/Significance

We have demonstrated for the first time that multibacillary leprosy patients under 15 years old have greater CD4+ and CD8+ Treg frequencies and these correlate with clinical and laboratorial aspects of disease. These findings suggest the involvement of these cells in the perpetuation of M. leprae infection.  相似文献   

16.

Background

Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings

HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-γ was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+ hepatocytes upregulated the production of TGF-β and blockade of TGF-β abrogated Treg phenotype and function.

Conclusions/Significance

These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses.  相似文献   

17.

Background

In HIV-infected patients on long-term HAART, virus persistence in resting long-lived CD4 T cells is a major barrier to curing the infection. Cell quiescence, by favouring HIV latency, reduces the risk of recognition and cell destruction by cytotoxic lymphocytes. Several cell-activation-based approaches have been proposed to disrupt cell quiescence and then virus latency, but these approaches have not eradicated the virus. CD4+CD25+ regulatory T cells (Tregs) are a CD4+ T-cell subset with particular activation properties. We investigated the role of these cells in virus persistence in patients on long-term HAART.

Methodology/Principal Findings

We found evidence of infection of resting Tregs (HLADRCD69CD25hiFoxP3+CD4+ T cells) purified from patients on prolonged HAART. HIV DNA harbouring cells appear more abundant in the Treg subset than in non-Tregs. The half-life of the Treg reservoir was estimated at 20 months. Since Tregs from patients on prolonged HAART showed hyporesponsiveness to cell activation and inhibition of HIV-specific cytotoxic T lymphocyte-related functions upon activation, therapeutics targeting cell quiescence to induce virus expression may not be appropriate for purging the Treg reservoir.

Conclusions

Our results identify Tregs as a particular compartment within the latent reservoir that may require a specific approach for its purging.  相似文献   

18.

Background

Both naturally arising Foxp3+ and antigen-induced Foxp3 regulatory T cells (Treg) play a critical role in regulating immune responses, as well as in preventing autoimmune diseases and graft rejection. It is known that antigen-specific Treg are more potent than polyclonal Treg in suppressing pathogenic immune responses that cause autoimmunity and inflammation. However, difficulty in identifying and isolating a sufficient number of antigen-specific Treg has limited their use in research to elucidate the mechanisms underlying their regulatory function and their potential role in therapy.

Methodology/Principal Findings

Using a novel class II MHC tetramer, we have isolated a population of CD4+ Foxp3 T cells specific for the autoantigen glutamic acid decarboxylase p286–300 peptide (NR286 T cells) from diabetes-resistant non-obese resistant (NOR) mice. These Foxp3 NR286 T cells functioned as Treg that were able to suppress target T cell proliferation in vitro and inhibit type 1 diabetes in animals. Unexpected results from mechanistic studies in vitro showed that their regulatory function was dependent on not only IFN-gamma and nitric oxide, but also on cell contact with target cells. In addition, separating NR286 Treg from target T cells in transwell assays abolished both production of NO and suppression of target T cells, regardless of whether IFN-γ was produced in cell cultures. Therefore, production of NO, not IFN-gamma, was cell contact dependent, suggesting that NO may function downstream of IFN-gamma in mediating regulatory function of NR286 Treg.

Conclusions/Significance

These studies identified a unique population of autoantigen-specific Foxp3 Treg that can exert their regulatory function dependent on not only IFN-γ and NO but also cell contact with target cells.  相似文献   

19.

Background

Migration of T cells, including regulatory T (Treg) cells, into the secondary lymph organs is critically controlled by chemokines and adhesion molecules. However, the mechanisms by which Treg cells regulate organ-specific autoimmunity via these molecules remain unclear. Although we previously reported autoimmune exocrinopathy resembling Sjögren''s syndrome (SS) in the lacrimal and salivary glands from C-C chemokine receptor 7 (CCR7)-deficient mice, it is still unclear whether CCR7 signaling might specifically affect the dynamics and functions of Treg cells in vivo. We therefore investigated the cellular mechanism for suppressive function of Treg cells via CCR7 in autoimmunity using mouse models and human samples.

Methods and Findings

Patrolling Treg cells were detected in the exocrine organs such as lacrimal and salivary glands from normal mice that tend to be targets for autoimmunity while the Treg cells were almost undetectable in the exocrine glands of CCR7 −/− mice. In addition, we found the significantly increased retention of CD4+CD25+Foxp3+ Treg cells in the lymph nodes of CCR7 −/− mice with aging. Although Treg cell egress requires sphingosine 1-phosphate (S1P), chemotactic function to S1P of CCR7−/− Treg cells was impaired compared with that of WT Treg cells. Moreover, the in vivo suppression activity was remarkably diminished in CCR7 −/− Treg cells in the model where Treg cells were co-transferred with CCR7 −/− CD25-CD4+ T cells into Rag2 −/− mice. Finally, confocal analysis showed that CCR7+Treg cells were detectable in normal salivary glands while the number of CCR7+Treg cells was extremely decreased in the tissues from patients with Sjögren''s syndrome.

Conclusions

These results indicate that CCR7 essentially governs the patrolling functions of Treg cells by controlling the traffic to the exocrine organs for protecting autoimmunity. Characterization of this cellular mechanism could have clinical implications by supporting development of new diagnosis or treatments for the organ-specific autoimmune diseases such as Sjögren''s syndrome and clarifying how the local immune system regulates autoimmunity.  相似文献   

20.

Background

Major histocompatibility complex (MHC) antigens are important for alloimmune responses as well as immune tolerance. Previous studies have shown that presentation of donor MHC antigens by donor-specific transfusion prior to or upon transplantation promotes transplant tolerance induced by other agents. However, it is unclear whether presentation of donor MHC antigens by DNA vaccination induces long-term allograft survival.

Methodology/Principal Findings

We investigated whether presentation of MHC class-II and/or class-I donor antigens by DNA vaccination suppresses alloimmune responses and promotes long-term allograft acceptance. We initially found that presentation of both MHC donor antigens by DNA vaccination itself prior to transplantation fails to significantly prolong islet allograft survival in otherwise untreated mice. However, islet allograft survival was significantly prolonged when MHC class-II DNA vaccination was accompanied with IL-2 administration (MHCII + IL-2) while MHC class-I DNA vaccination was followed by IL-2 and subsequent neutralizing anti-IL-2 treatments (MHCI + IL-2/anti-IL-2). Especially, this protocol promoted long-term allograft survival in the majority of recipients (57%) when combined with low doses of rapamycin post-transplantation. Importantly, MHCII + IL-2 induced FoxP3+ Treg cells in both spleens and grafts and suppressed graft-infiltrating CD4+ cell proliferation, whereas MHCI + IL-2/anti-IL-2 mainly inhibited graft-infiltrating CD8+ cell proliferation and donor-specific CTL activity. The combined protocol plus rapamycin treatment further reduced both CD4+ and CD8+ T cell proliferation as well as donor-specific CTL activity but spared FoxP3+ Treg cells. Depleting CD25+ Treg cells or adoptive transfer of pre-sensitized CD8+ T cells abolished this long-term allograft survival.

Conclusions/Significance

Manipulating IL-2 availability during presentation of MHC class-II and class-I donor antigens by DNA vaccination pre-transplantation induces Treg cells, suppresses alloimmune responses and promotes long-term allograft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号