首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the research on the plant growth regulators produced by phytopathogenic fungi, two active metabolites, sclerotinin A and B, in addition to sclerin have been isolated from the culture filtrate of S. sclerotiorum. Sclerotinin A and B have been shown to be 3,6,8-tri-hydroxy-3,4,5,7-tetramethyl-3,4-dihydroisocoumarin and 3,6,8-trihydroxy-3,5,7-trimethyl-3,4- dihydroisocoumarin, respectively.  相似文献   

2.
The impact of chronic free air ozone (O3) exposure and belowground pathogen stress on growth and total biomass development of young beech trees (Fagus sylvatica L.) was investigated in a lysimeter study. Plants were growing during four years under ambient or elevated atmospheric O3 concentrations. Additionally, in the last vegetation period the root rot pathogen Phytophthora citricola was introduced to study the interaction of ozone exposure and pathogen stress in the soil-plant system. A complete harvest at the end of the experiment enabled for the first time the assessment of fine and coarse root biomass of individual trees with a high vertical resolution down to two meter depth. Plant growth was significantly reduced by elevated ozone but not affected by P. citricola. Biomass partitioning between fine and coarse roots as well as vertical root distribution were significantly affected by both factors, whereas changes in root/shoot biomass ratio were not observed.  相似文献   

3.
Three fungi, isolated from soil from which Phytophthora was not obtained, were evaluated for antagonism of Phytophthora spp. shown to cause root rot of chestnut in South Australia. Trichoderma hamatum and T. pseudokoningii appeared to inhibit P. cinnamomi by mycoparasitism. with evidence of parallel growth and coiling, and both Trichoderma spp. and Gliocladium virens grew over P. cinnamomi in vitro, preventing further growth of this pathogen. Antibiotics produced by young T. hamatum cultures and G. virens in culture filtrate experiments inhibited growth of P. cinnamomi and P. citricola. with filtrate from 4-day-old cultures of G. virens showing the greatest potential for biocontrol. All three antagonists prevented P. cinnamomi and P. citricola from causing infection symptoms on micropropagated shoots of chestnut cvs Goldsworthy and Buffalo Queen in an in vitro excised shoot bioassay for biocontrol.  相似文献   

4.
Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by R. necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.  相似文献   

5.
6.
The oomycete plant pathogen Phytophthora cinnamomi causes a highly destructive root rot that affects numerous hosts. Integrated management strategies are needed to control P. cinnamomi in seminatural oak rangelands. We tested how biofumigation affects crucial stages of the pathogen's life cycle in vitro, in infested soils under laboratory conditions and in planta. Different genotypes of three potential biofumigant plant species (Brassica carinata, Brassica juncea, Brassica napus) were collected at different phenological stages, analysed for their glucosinolate contents, and subsequently tested. The most effective genotypes against mycelial growth and sporangial production were further tested on the viability of chlamydospores in artificially infested natural soils and in planta on Lupinus luteus, a host highly susceptible to P.cinnamomi. Brassica carinata and B. juncea genotypes inhibited mycelial growth, decreased sporangial production, and effectively inhibited the viability of chlamydospores in soil, but only B. carinata decreased disease symptoms in plants. Effective genotypes of Brassica had high levels of the glucosinolate sinigrin. Biofumigation with Brassica plants rich in sinigrin has potential to be a suitable tool for control of oak root disease caused by P. cinnamomi in Spanish oak rangeland ecosystems.  相似文献   

7.
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.  相似文献   

8.
Oridonin (ORI) is an active natural ent-kaurene diterpenoid ingredient with notable anti-cancer and anti-inflammation activities. Currently, a strategy was developed to identify metabolites and to assess the metabolic profiles of ORI in vitro using ultra-high-performance liquid chromatography-Triple/time-of-flight mass spectrometry (UPLC-Triple-TOF-MS/MS). Meanwhile, the metabolism differences of ORI in the liver microsomes of four different species were investigated using a principal component analysis (PCA) based on the metabolite absolute peak area values as the variables. Based on the proposed methods, 27 metabolites were structurally characterized. The results indicate that ORI is universally metabolized in vitro, and the metabolic pathway mainly includes dehydration, hydroxylation, di-hydroxylation, hydrogenation, decarboxylation, and ketone formation. Overall, there are obvious inter-species differences in types and amounts of ORI metabolites in the four species. These results will provide basic data for future pharmacological and toxicological studies of ORI and for other ent-kauranes diterpenoids. Meanwhile, studying the ORI metabolic differences helps to select the proper animal model for further pharmacology and toxicological assessment.  相似文献   

9.
Optimisation of compound pharmacokinetics (PK) is an integral part of drug discovery and development. Animal in vivo PK data as well as human and animal in vitro systems are routinely utilised to evaluate PK in humans. In recent years machine learning and artificial intelligence (AI) emerged as a major tool for modelling of in vivo animal and human PK, enabling prediction from chemical structure early in drug discovery, and therefore offering opportunities to guide the design and prioritisation of molecules based on relevant in vivo properties and, ultimately, predicting human PK at the point of design. This review presents recent advances in machine learning and AI models for in vivo animal and human PK for small-molecule compounds as well as some examples for antibody therapeutics.  相似文献   

10.
The purpose of this study was to analyze morphological and physiological aspects of Arbutus unedo L. plants treated with paclobutrazol (PAC), compounds characterized by their double activity as plant growth regulators and fungicides, and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch, which forms a special type of mycorrhizal colonization called arbutoid mycorrhiza. Native A. unedo L. seedlings were grown in a greenhouse and subjected to four treatments for 4 months: 0 or 60 mg of PAC and inoculated or not with P. tinctorius (Pers.). The arbutoid mycorrhizal inoculation increased in plants treated with PAC. Paclobutrazol reduced shoot and root biomass, plant height, internode length, stem diameter, leaf area, total root length and number of tips. P. tinctorius increased plant height and had a beneficial effect on the root system (increasing root diameter and the number of tips). PAC treatment led to an increase in ion levels in the leaf tissue, while mycorrhizal inoculation induced lower K and higher P contents in the roots. Leaf water potentials (at predawn and at midday) increased with the combined treatment. The absence of water deficit conditions meant there was no osmotic adjustment. Higher photosynthesis (Pn) values were associated with higher stomatal conductance (gs) values in the mycorrhizal plants, which influenced water uptake from the roots. However, gs decreased in the PAC-treated plants, reducing photosynthesis and, as a consequence, growth. The higher hydraulic conductivity (Lp) in the plants treated with PAC may have induced a better water energy status and good water transport. The combined treatment produced beneficial effects in the plants, improving their water and nutritional status.  相似文献   

11.
On a global scale, cereal grains and animal feed may be contaminated with trichothecenes, such as deoxynivalenol and T-2 toxin, zearalenone (ZEA), and fumonisins, the major mycotoxins of Fusarium fungi. Of these mycotoxins, ZEA is unequivocally implicated in reproductive disorders of swine and other domestic animals. Experiments in vivo and in vitro indicate that ZEA and its metabolites exert estrogenic effects resulting in functional and morphological alterations in reproductive organs. Recently, the potential of trichothecenes and fumonisins to cause reproductive disorders in domestic animals has been investigated. The present review summarizes the toxicological data on the effects of Fusarium mycotoxins on ovarian function, testicular function, placenta and fetus, and puberty/sexual maturity of domestic animals. The results of in vivo animal studies and in vitro tests are reported and discussed.  相似文献   

12.
A lysimeter study was performed to monitor long term effects of chronic ozone enrichment on saplings of European beech (Fagus sylvatica L). After 3 years of ozone exposure a root infection with Phytophthora citricola Swada was established in the fourth year to study the interaction between elevated ozone and the root infection on the carbon budget of beech saplings. By using quantitative PCR no differences in root infection with P. citricola were observed between the ozone treatments. In contrast to the first 3 years of ozone exposure, sucrose and starch concentrations in leaves were diminished in ozone treated plants in the fourth year. The root infection reduced sucrose concentrations in leaves. Starch reserves of the heterotrophic biomass were not affected by any treatments. Thus 4 years of ozone exposure and 1 year of P. citricola root infection had only limited effect on carbohydrate metabolism in beech saplings.  相似文献   

13.
14.
The fungal endophyte Diaporthe liquidambaris can establish mutualistic relationships with rice (Oryza sativa) and promote plant growth, specifically under low nitrogen (N) conditions, but the underlying mechanisms are largely unknown. The fungal nutritional status, which is based on host carbohydrate dynamics, determines symbiotic outcomes. In this study, an experiment with (E+) and without (E-) D. liquidambaris under low, moderate and high N conditions demonstrated that D. liquidambaris promoted chlorophyll biosynthesis and water-soluble carbohydrate (WSCs) accumulation in rice roots and root exudates under a lower N supply. In addition, D. liquidambaris grew better on substrates containing E+ root extracts in vitro due to the carbon (C) resource compared to that on E-treatments. Further experiments with manipulated environmental conditions (light and temperature) in vivo indicated that increased root WSCs were closely related to improved fungal colonization. We concluded that the presence of the fungal endophyte induced an enhanced mutualistic system by mediating host carbohydrate dynamics under N-poor conditions.  相似文献   

15.
Based on the growth-differentiation balance theory (GDB) and the influence of tropospheric ozone (O3) on plants, we hypothesized that pre-conditioning with elevated O3 reduces adverse effects of the root rot pathogen Phytophthora citricola Sawada. To this end a 2-year phytotron study with juvenile European beech (Fagus sylvatica L.) and (Picea abies [L.] Karst.) grown in mixture was performed. The hypothesis was tested on phenological, leaf and root morphological as well as physiological aspects of plant performance. Contrasting with spruce, elevated O3 limited leaf and root biomass development, photosynthetic performance and N uptake of beech. The growth limitation by O3 conveyed increased resistance in beech against the pathogen. Conversely, spruce displayed enhanced susceptibility in the combined O3/P. citricola treatment. The hypothesis was supported in the case of beech rather than spruce. Nevertheless, conclusions support GDB regarding the trade-off between growth and stress defense, although compliance appears to be species-specific.  相似文献   

16.
Many approaches have been investigated for growing oocytes in vitro in mammals. To support oocyte growth in vitro, the culture systems must meet certain conditions for maintaining connections between oocytes and surrounding granulosa cells. The aims of this study were to determine the effects of combinations of 17β-estradiol (E2) and androstenedione (A4) on in vitro growth of bovine oocytes and to determine the number of connections between the oocyte and granulosa cells. Oocyte–granulosa cell complexes (OGCs) collected from early antral follicles (0.4−0.7 mm in diameter) were cultured for 14 days in a medium with different concentrations of E2 and A4, either alone or in combinations. We then assessed the number of transzonal projections (TZPs), which extend from granulosa cells through the zona pellucida to the oolemma. During in vitro growth culture, OGC structures were maintained in the medium with steroid hormones. The mean diameter of oocytes grown in the medium with both E2 and A4 was increased from 95.8 μm to around 120 μm, larger than oocytes grown without steroid hormones (109.9 μm) and similar in size to in vivo fully grown oocytes (119.4 μm) from 4- to 6-mm antral follicles. In subsequent in vitro maturation culture (22 hours), 30% (12 of 40) and 34% (14 of 41) of oocytes grown with E2 or A4 alone, respectively, matured to metaphase II; meanwhile, oocytes grown with a combination of E2 and A4 matured to metaphase II at a high rate (58%, 23 of 40). Growing oocytes isolated from early antral follicles had many uniformly distributed TZPs throughout the zona pellucida. After 14 days of culture, there was a significant decrease in the number of TZPs in oocytes grown without steroid hormones, whereas the number of TZPs was maintained in oocytes grown with steroid hormones. In particular, oocytes grown with E2 alone or with a combination of E2 and A4 had numbers of TZPs similar to oocytes before growth culture. In conclusion, a combination of E2 and A4 maintained the connections between oocytes and granulosa cells during in vitro growth culture of bovine oocytes for 14 days, resulting in the complete oocyte growth and the acquisition of meiotic competence in more than half the oocytes.  相似文献   

17.
《Fungal biology》2019,123(10):732-744
In vitro propagation of AM fungi using transformed root cultures (TRC) is commonly used to obtain pure AM fungal propagules for use in research and industry. Early observations indicate that such an artificial environment can alter traits and function of AM fungi over time. We hypothesized that increased in vitro cultivation may promote ruderal strategies in fungi by enhancing propagule production and reducing mutualistic quality. To examine the effect of in vitro cultivation on the trait and function of AM fungi, we inoculated plants with 11 Rhizoglomus irregulare isolates which fell along a cultivation gradient spanning 80 generations. We harvested plants at 10, 20 and 30 d post inoculation to observe differences in fungal and plant traits post infection. In vitro cultivation led to increased spore production but reduced plant shoot phosphorus. Our results indicate that in vitro propagation may indirectly select for traits that affect symbiotic quality.  相似文献   

18.
Plants host multiple symbionts that interact with each other affecting plant performance and regulating their establishment. Here, we analyzed how the association with Epichloë endophytes affects belowground colonization by Dark Septate Endophytes (DSE) and arbuscular mycorrhizal fungi (AMF) in the grass Bromus auleticus. Epichloë-symbiotic (E+) and Epichloë-non symbiotic (E−) plants were sampled from a long-term experimental plot and colonization structures were analyzed in the roots. We also examined the influence of Epichloë exudates on the in vitro growth of DSE Microdochium bolleyi isolated from roots. Epichloë symbiosis increased AMF colonization, although differences were not significant. Despite the lack of differences in total DSE colonization, in concordance with in vitro findings, a higher significant abundance of microsclerotia was observed in E+ plants. A negative correlation between total mycorrhizal and DSE was found. Our findings show a more uniform root colonization pattern in E+ plants, suggesting a root symbiosis modulating role.  相似文献   

19.
《Fungal biology》2014,118(11):872-884
Dutch elm disease (DED) fungi exhibit yeast-mycelium dimorphism both in planta and in vitro. However, previously published data on the transition between these two growth forms in vitro were mostly obtained from a single strain. We examined the effect of six factors on yeast-mycelium dimorphism in vitro in ten strains of Ophiostoma ulmi, Ophiostoma novo-ulmi and Ophiostoma himal-ulmi. Nitrogen sources, calcium, and yeast extract, altogether with inhibitors of phosphodiesterase (caffeine) and dioxygenases (propyl gallate and salicylic acid) were tested in defined culture media. Morphological response to manipulation of several of these factors varied according to the strain of Ophiostoma being analysed. Responses ranged from no statistical differences in morphological transitions to stimulation or reversion of yeast-mycelium dimorphism with the treatments that were tested. These results suggest that different mechanisms and pathways operate in the control of the yeast-mycelium transition in DED pathogens. Oxylipins could be involved in the yeast-to-mycelium transition, since the addition of a dioxygenase inhibitor, salicylic acid, reduced mycelium production in all strains that were tested.  相似文献   

20.
Dark septate endophytes of the Phialocephala fortinii s.l. – Acephala applanata species complex (PAC) are presumed to be the most abundant root colonizing endophytes of conifers across the Northern hemisphere. To test the competitiveness of different PAC strains, PAC-free Picea abies saplings were inoculated with five different PAC strains by planting them in pre-colonized substrates. Saplings were left to grow for six weeks and then transplanted crosswise into a substrate colonized by one of the other four strains for a further two weeks. PAC were isolated and genotyped using microsatellite markers. The power of colonization, i.e. the ability of colonizing roots already colonized by another PAC strain, and the power of retention, i.e. the ability of a resident strain of not being suppressed by an invading PAC strain, were calculated for each strain in every combination. The experiment was run twice under two different climatic conditions. Our results show that PAC strains differ (1) in their ability to colonize PAC-free, non-sterile roots, (2) in resistance against being suppressed by another PAC strain and (3) in their ability to invade roots already colonized by another PAC strain. In addition, both the PAC–PAC and the PAC-host interactions depend on the climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号