首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
The formation of shoot and root meristems that ultimately give rise to all tissues of the plant body occurs for the first time during embryogenesis. Meristem formation has traditionally been defined in terms of the appearance of histological features of meristems; this approach has led to varying interpretations of the timing of meristem formation relative to other events in embryogenesis. Markers that would provide more objective criteria for the analysis of meristem formation have not been widely available. The maize homeobox gene, knotted1 (kn1), is expressed in shoot meristems throughout postembryonic stages of shoot development. In order to determine whether this gene is expressed in the shoot meristem from its earliest inception, we examined the expression of kn1 in embryos at a series of stages by in situ hybridization to kn1 mRNA and immunolocalization of KN1 protein. Our results show that the onset of kn1 expression is temporally and spatially coincident with the earliest histologically recognizable signs of shoot meristem formation in the embryo, and thus provides a valuable marker for this process. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

5.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

6.
We examined genes involved in the regulatory pathway of gibberellin (GA) in meristems of Streptocarpus rexii. The plants do not possess a typical shoot apical meristem (SAM) and form unique meristems: the basal meristem extends the lamina area of one cotyledon to produce anisocotylous seedlings; the groove meristem forms new leaves at the base of the macrocotyledon. Exogenous application of GA significantly suppresses the basal meristem activity in developing cotyledons and the seedlings remain isocotyl. To examine the role of endogenous GA on these meristems in vivo, we isolated homologs of GA2-oxidase responsible for degrading active GAs (SrGA2ox), and GA20-oxidase regulating the rate limiting step of active GA synthesis (SrGA20ox). During embryogenesis, while first partly overlapping, the expression of SrGA2ox and SrGA20ox became more differentiated and mutually exclusive, ending with SrGA2ox being expressed solely in the adaxial–proximal domain of the embryo in regions with meristem activity, whereas SrGA20ox was restricted to the fork between the two cotyledons. The latter may be responsible for suppressing the formation of an embryonic SAM in S. rexii. In developing seedlings, SrGA2ox expression also followed the centers of meristem activity, where SrGA20ox expression was excluded. Our results suggest that low levels of GA are required in S. rexii meristems for their establishment and maintenance. Thus, the meristems in S. rexii share similar regulatory pathways suggested for the SAM in model plants, but that in S. rexii evolutionary modifications involving a lateral transfer of function, from shoot to leaves, is implicated in attaining the unusual morphology of the plants.  相似文献   

7.
G Chuck  C Lincoln    S Hake 《The Plant cell》1996,8(8):1277-1289
Plant development depends on the activity of apical meristems, which are groups of indeterminate cells whose derivatives elaborate the organs of the mature plant. Studies of knotted1 (kn1) and related gene family members have determined potential roles for homeobox genes in the function of shoot meristems. The Arabidopsis kn1-like gene, KNAT1, is expressed in the shoot apical meristem and not in determinate organs. Here, we show that ectopic expression of KNAT1 in Arabidopsis transforms simple leaves into lobed leaves. The lobes initiate in the position of serrations yet have features of leaves, such as stipules, which form in the sinus, the region at the base of two lobes. Ectopic meristems also arise in the sinus region close to veins. Identity of the meristem, that is, vegetative or floral, depends on whether the meristem develops on a rosette or cauline leaf, respectively. Using in situ hybridization, we analyzed the expression of KNAT1 and another kn1-like homeobox gene, SHOOT MERISTEMLESS, in cauliflower mosaic virus 35S::KNAT1 transformants. KNAT1 expression is strong in vasculature, possibly explaining the proximity of the ectopic meristems to veins. After leaf cells have formed a layered meristem, SHOOT MERISTEMLESS expression begins in only a subset of these cells, demonstrating that KNAT1 is sufficient to induce meristems in the leaf. The shootlike features of the lobed leaves are consistent with the normal domain of KNAT1's expression and further suggest that kn1-related genes may have played a role in the evolution of leaf diversity.  相似文献   

8.
The knotted1 (kn1) gene of maize is expressed in meristems and is absent from leaves, including the site of leaf initiation within the meristem. Recessive mutations of kn1 have been described that limit the capacity to make branches and result in extra carpels. Dominant mutations suggest that kn1 function plays a role in maintaining cells in an undifferentiated state. We took advantage of a Ds-induced dominant allele in order to screen for additional recessive alleles resulting from mobilization of the Ds element. Analysis of one such allele revealed a novel embryonic shoot phenotype in which the shoot initiated zero to few organs after the cotyledon was made, resulting in plants that arrested as seedlings. We refer to this phenotype as a limited shoot. The limited shoot phenotype reflected loss of kn1 function, but its penetrance was background dependent. We examined meristem size and found that plants lacking kn1 function had shorter meristems than non-mutant siblings. Furthermore, meristems of restrictive inbreds were significantly shorter than meristems of permissive inbreds, implying a correlation between meristem height and kn1 gene function in the embryo. Analysis of limited shoot plants during embryogenesis indicated a role for kn1 in shoot meristem maintenance. We discuss a model for kn1 in maintenance of the morphogenetic zone of the shoot apical meristem.  相似文献   

9.
10.
Hay A  Jackson D  Ori N  Hake S 《Plant physiology》2003,131(4):1671-1680
Expression of KNOX (KNOTTED1-like homeobox) genes in the shoot apical meristem of Arabidopsis is required for maintenance of a functional meristem, whereas exclusion of KNOX gene expression from leaf primordia is required for the elaboration of normal leaf morphology. We have constructed a steroid-inducible system to regulate both the amount and timing of KN1 (KNOTTED1) misexpression in Arabidopsis leaves. We demonstrate that lobed leaf morphology is produced in a dose-dependent manner, indicating that the amount of KN1 quantitatively affects the severity of lobing. The KN1-glucocorticoid receptor fusion protein is not detected in leaves in the absence of steroid induction, suggesting that it is only stable when associated with steroid in an active state. By using a second inducible fusion protein to mark exposure of leaf primordia to the steroid, we determined the stage of leaf development that produces lobed leaves in response to KN1. Primordia as old as plastochron 7 and as young as plastochron 2 were competent to respond to KN1.  相似文献   

11.
12.
13.
A major catabolic pathway for gibberellin (GA) is initiated by 2beta-hydroxylation, a reaction catalyzed by GA 2-oxidase. We have isolated and characterized a cDNA, designated Oryza sativa GA 2-oxidase 1 (OsGA2ox1) from rice (Oryza sativa L. cv Nipponbare) that encodes a GA 2-oxidase. The encoded protein, produced by heterologous expression in Escherichia coli, converted GA(1), GA(4), GA(9), GA(20), and GA(44) to the corresponding 2beta-hydroxylated products GA(8), GA(34), GA(51), GA(29), and GA(98), respectively. Ectopic expression of the OsGA2ox1 cDNA in transgenic rice inhibited stem elongation and the development of reproductive organs. These transgenic plants were deficient in endogenous GA(1). These results indicate that OsGA2ox1 encodes a GA 2-oxidase, which is functional not only in vitro but also in vivo. OsGA2ox1 was expressed in shoot apex and roots but not in leaves and stems. In situ hybridization analysis revealed that OsGA2ox1 mRNA was localized in a ring at the basal region of leaf primordia and young leaves. This ring-shaped expression around the shoot apex was drastically decreased after the phase transition from vegetative to reproductive growth. It was absent in the floral meristem, but it was still present in the lateral meristem that remained in the vegetative phase. These observations suggest that OsGA2ox1 controls the level of bioactive GAs in the shoot apical meristem; therefore, reduction in its expression may contribute to the early development of the inflorescence meristem.  相似文献   

14.
Smith HM  Hake S 《The Plant cell》2003,15(8):1717-1727
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high affinity. We have obtained a mutation in one of the Arabidopsis BELL genes, PENNYWISE (PNY), that appears phenotypically similar to the KNOX mutant brevipedicellus (bp). Both bp and pny have randomly shorter internodes and display a slight increase in the number of axillary branches. The double mutant shows a synergistic phenotype of extremely short internodes interspersed with long internodes and increased branching. PNY is expressed in inflorescence and floral meristems and overlaps with BP in a discrete domain of the inflorescence meristem where we propose the internode is patterned. The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem.  相似文献   

15.
16.
17.
The genus Streptocarpus comprises species with diverse body plans. Caulescent species produce leaves from a conventional shoot apical meristem (SAM), whereas acaulescent species lack a conventional SAM and produce only a single leaf (the unifoliate form) or clusters of leaves from the base of more mature leaves (the rosulate form). These distinct morphologies reflect fundamental differences in the role of the SAM and the process of leaf specification. A subfamily of KNOTTED-like homeobox (KNOX) genes are known to be important in regulating meristem function and leaf development in model species with conventional morphologies. To test the involvement of KNOX genes in Streptocarpus evolution, two parologous KNOX genes (SSTM1 and SSTM2) were isolated from species with different growth forms. Their phylogenetic analysis suggested a gene duplication before the subgeneric split of Streptocarpus and resolved species relationships, supporting multiple evolutionary origins of the rosulate and unifoliate morphologies. In S. saxorum, a caulescent species with a conventional SAM, KNOX proteins were expressed in the SAM and transiently downregulated in incipient leaf primordia. The ability of acaulescent species to initiate leaves from existing leaves was found to correlate with SSTM1 expression and KNOX protein accumulation in leaves and to reflect genetic differences at two loci. Neither locus corresponded to SSTM1, suggesting that cis-acting differences in SSTM1 regulation were not responsible for evolution of the rosulate and unifoliate forms. However, the involvement of KNOX proteins in leaf formation in rosulate species suggests that they have played an indirect role in the development of morphological diversity in Streptocarpus.  相似文献   

18.
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.  相似文献   

19.
Plant architecture is elaborated through the activity of shoot apical meristems (SAMs), which produce repeating units known as phytomers, that are comprised of leaf, node, internode, and axillary bud. Insight into how SAMs function and how individual phytomer components are related to each other can been obtained through characterization of recessive mutants with perturbed shoot development. In this study, we characterized a new mutant to further understand mechanisms underlying shoot development in maize. The filifolium1-0 (ffm1-0) mutants develop narrow leaves on dwarfed shoots. Shoot growth often terminates at the seedling stage from depletion of the SAM, but if plants survive to maturity they are invariably bushy. KN1-like homeobox (KNOX) proteins are inappropriately regulated in mutant apices, adaxial identity is not specified in mutant leaves, and axillary meristems develop precociously. We propose that FFM1 acts to demarcate zones within the SAM so that appropriate fates can be conferred on cells within those zones by other factors. On the basis of the mutant phenotype, we also speculate about different relationships between phytomer components in maize and Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号