首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a novel control system for functional electrical stimulation (FES) locomotion, which aims to generate normal locomotion for paraplegics via FES. It explores the possibility of applying ideas from biology to engineering. The neural control mechanism of the biological motor system, the central pattern generator, has been adopted in the control system design. Some artificial control techniques such as neural network control, fuzzy logic, control and impedance control are incorporated to refine the control performance. Several types of sensory feedback are integrated to endow this control system with an adaptive ability. A musculoskeletal model with 7 segments and 18 muscles is constructed for the simulation study. Satisfactory simulation results are achieved under this FES control system, which indicates a promising technique for the potential application of FES locomotion in future.  相似文献   

2.
We describe and evaluate above- and below-lesion EMG control of functional electrical stimulation (FES) in upper motor neuron paraplegics, in order to provide them with a patient-responsive system for walking with a walker support. Control is considered in terms of a combination of above-lesion EMG control and below-lesion response-EMG control. The above-lesion EMG is used to control the activation of limb functions involved in standing up and walking with FES, control being accomplished by analysing raw surface-EMG time-series patterns to discriminate between upper-trunk muscle contraction patterns, which in turn, are correlated with intended lower-limb functions involved in walking, so that natural and instinctive balance changes in paraplegics are controlled by the patient from above the lesion. The below-lesion response-EMG is the EMG produced in response to the FES pulses at the stimulation sites, for adjusting stimulation levels as needed when contractions weaken due to muscle fatigue. Above-lesion EMG is a stochastic (random-like) signal, being a response to unsynchronized motor neuron firings, whereas the below-lesion EMG is a deterministic signal responding to synchronized firings that result solely from the FES pulses. We also discuss the merits and difficulties of EMG control, and evaluate patient performance under such control, noting that FES-activated walking without adequate and patient-responsive control is of very limited use to paraplegics.  相似文献   

3.
This review discusses the advancements that are needed to enhance the effects of electrical stimulation for restoring or assisting movement in humans with an injury/disease of the central nervous system. A complex model of the effects of electrical stimulation of peripheral systems is presented. The model indicates that both the motor and sensory systems are activated by electrical stimulation. We propose that a hierarchical hybrid controller may be suitable for functional electrical stimulation (FES) because this type of controller acts as a structural mimetic of its biological counterpart. Specific attention is given to the neural systems at the periphery with respect to the required electrodes and stimulators. Furthermore, we note that FES with surface electrodes is preferred for the therapy, although there is a definite advantage associated with implantable technology for life-long use. The last section of the review discusses the potential need to combine FES and robotic systems to provide assistance in some cases.  相似文献   

4.
Functional neuromuscular stimulation (FNS)/functional electrical stimulation (FES) is a potential way to restore some functionality to the limbs of patients with spinal cord injury through direct/indirect stimulation of the motoneuron. One of the constraints for wider use of FNS on paraplegic patients is the lack of efficient control algorithm. Most of the published works on FNS/FES control are based on oversimplified models of human body dynamics. An innovative control strategy for stabilizing the standing posture of paraplegic patients is proposed here which is a combination of a proportional-plus-derivative controller for motions of the skeletal system and a control action prediction mechanism to produce musculotendon activation. The goal is to produce musculotendon torque which can approximate those demanded by the controller for the skeletal system. In computer simulations, using a detailed skeletal–musculotendon–muscle activation dynamics model of human body, this FNS/FES control approach can stabilize a paraplegic patient's standing posture with the minimum number of musculotendon groups. Also, it is found that this control strategy can maintain stability even in the presence of reasonable variations in the controller's musculotendon parameters.  相似文献   

5.
The use of functional electrical stimulation (FES) of muscle for paraplegic locomotion, or grasp augmentation in tetraplegia, is limited by the variability in muscle response to stimulation as a result of several external and internal factors. Previous approaches to this problem have used position-servo controllers, which have been shown to function satisfactorily in the laboratory. However, such systems will fail should obstacles be encountered or should the stimulation hardware develop a fault. To prevent such potentially dangerous failures some form of sensory feedback is required. This paper describes the first application of a technique known as extended physiological proprioception (EPP) to the control of FES to compensate for muscle response variability and provide proprioceptive feedback via the appropriate sensory pathways. In the experimental system described, a paraplegic subject controlled the extension of his paralysed knee by shoulder protraction. A Bowden cable linked the two joints, and a dynamometer in this cable was used to derive the control signal for a computer-controlled stimulator which delivered surface stimulation to the quadriceps muscle group. Modelling and parameter identification were performed by analysis of the step response, and the controller was designed from consideration of the root locus. The advantages of the system, in terms of improved proprioceptive feedback and reduced limb-positioning error were assessed in a test of joint positioning accuracy with vision occluded. The EPP system showed improvements over both open and closed-loop position-servo controllers.  相似文献   

6.
Functional Electrical Stimulation (FES) is a technique used to improve mobility and function for patients suffering some neurological related diseases such us Multiple Sclerosis (MS) and stroke. Some patients might require FES applied in more than one location depending on the extent of the neurological condition. Currently, this can be achieved using multi-channel FES systems. However, these systems can be bulky and impractical in daily usage. This research investigates using a wireless distributed FES system to overcome some of the limitations of the current multi-channel systems. A prototype of a three-channel FES system was built and tested. The prototype is used for drop foot stimulation and reciprocal arm swing stimulation while the user is walking, and for elbow extension and wrist/fingers opening stimulation if triggered while standing or sitting. A pilot study was designed to evaluate the reliability and repeatability of the system with 11 healthy volunteers without applying stimulation. This was followed by a case study with a hemiplegic person. The results indicate that the system can successfully detect and generate output responses appropriate to the input signals from the body sensors.  相似文献   

7.
Fatigue compensation during FES using surface EMG   总被引:5,自引:0,他引:5  
Muscle fatigue limits the effectiveness of FES when applied to regain functional movements in spinal cord injured (SCI) individuals. The stimulation intensity must be manually increased to provide more force output to compensate for the decreasing muscle force due to fatigue. An artificial neural network (ANN) system was designed to compensate for muscle fatigue during functional electrical stimulation (FES) by maintaining a constant joint angle. Surface electromyography signals (EMG) from electrically stimulated muscles were used to determine when to increase the stimulation intensity when the muscle’s output started to drop.

In two separate experiments on able-bodied subjects seated in hard back chairs, electrical stimulation was continuously applied to fatigue either the biceps (during elbow flexion) or the quadriceps muscle (during leg extension) while recording the surface EMG. An ANN system was created using processed surface EMG as the input, and a discrete fatigue compensation control signal, indicating when to increase the stimulation current, as the output. In order to provide training examples and test the systems’ performance, the stimulation current amplitude was manually increased to maintain constant joint angles. Manual stimulation amplitude increases were required upon observing a significant decrease in the joint angle. The goal of the ANN system was to generate fatigue compensation control signals in an attempt to maintain a constant joint angle.

On average, the systems could correctly predict 78.5% of the instances at which a stimulation increase was required to maintain the joint angle. The performance of these ANN systems demonstrates the feasibility of using surface EMG feedback in an FES control system.  相似文献   


8.
This paper reviews recent topics of clinical application of functional electrical stimulation (FES) for the paralyzed extremities in Japan. Transcutaneous and percutaneous FES systems have been clinically used in Japan. Candidates of extremity FES arer mostly stroke and spinal cord injury patients. By using percutaneous FES system, all of the joints of the upper extremity including the shoulder have been controlled for activities of daily living in the hemiplegic patient. Simultaneous FES control of the hand and wrist and the bilateral hands have also been achieved in C5 and C6 quadriplegics, respectively. Hybrid FES systems using percutaneous and surface electrodes, where FES is used in combination with orthoses, have been applied to the paraplegics because they are highly practical for assisting their locomotive activities. Percutaneous FES have been also provided the amyotropic lateral sclerosis patients with standing up motion. A total implant FES system with 16 output channels is currently developing as a next generation FES system.  相似文献   

9.
Motion control of musculoskeletal systems with redundancy   总被引:1,自引:0,他引:1  
Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle–subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.  相似文献   

10.
EMG monitoring in functional electrostimulation]   总被引:1,自引:0,他引:1  
When using functional electrical stimulation (FES), correct adjustment of stimulation parameters, and monitoring of the stimulated muscle is mandatory if tissue damage is to be avoided. Although several FES systems are already in regular use, a method for direct muscle monitoring is still lacking. This paper investigates the suitability of the electromyogram (EMG) for such a purpose. In six sheep, the right latissimus dorsi muscle (LDM) and the associated thoracodorsal nerve were exposed. Stimulation was effected via electrodes placed on the nerve. Three electrodes were placed in the LDM for EMG recording, and the tendon was connected to a force transducer for isometric force measurement. Stimulation was applied for one second (burst), followed by a three-second pause. The stimulation current was increased in 0.2 mA steps, starting at 0 mA and ending at 4 mA. Throughout the investigation, the EMG signal was monitored with an oscilloscope. In addition, the EMG signal and the force transducer signal were recorded for subsequent analysis. An analysis of the data of all six sheep revealed an almost linear relationship between muscle force and m-wave amplitude (magnitude of r = 0.95, p < 0.001). M-wave monitoring during EMG recording with three intramuscular electrodes is a reliable method of monitoring FES-induced muscle activity, but the absolute force cannot be measured.  相似文献   

11.
During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force-time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force-time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance.  相似文献   

12.
Every sensation begins with the conversion of a sensory stimulus into the response of a receptor neuron. Typically, this involves a sequence of multiple biophysical processes that cannot all be monitored directly. In this work, we present an approach that is based on analyzing different stimuli that cause the same final output, here defined as the probability of the receptor neuron to fire a single action potential. Comparing such iso-response stimuli within the framework of nonlinear cascade models allows us to extract the characteristics of individual signal-processing steps with a temporal resolution much finer than the trial-to-trial variability of the measured output spike times. Applied to insect auditory receptor cells, the technique reveals the sub-millisecond dynamics of the eardrum vibration and of the electrical potential and yields a quantitative four-step cascade model. The model accounts for the tuning properties of this class of neurons and explains their high temporal resolution under natural stimulation. Owing to its simplicity and generality, the presented method is readily applicable to other nonlinear cascades and a large variety of signal-processing systems.  相似文献   

13.
Due to natural or artificial obstacles, gait is a less automatic and periodic process than it would appear when studying normal walking on the level. Pre-programmed functional electrical stimulation (FES) sequences, therefore, do not appear to be a suitable approach to the control of multichannel electrical stimulators in the restoration of paraplegic walking. Walking in paraplegic subjects must be, to a large extent, under voluntary control. To lessen the burden of this control, the symmetry of walking can be taken into account. Symmetric motion of the legs requires symmetric FES actuation. Symmetry of FES responses was studied in a group of 10 paraplegic subjects who had all undergone the FES training program. Recruitment curve, fatigue index and twitch delay were assessed. An average 80% symmetry was found in all parameters measured, thus allowing a reduction of complexity of control approach for FES locomotor aids.  相似文献   

14.
Loss of hand use is considered by many spinal cord injury survivors to be the most devastating consequence of their injury. Functional electrical stimulation (FES) of forearm and hand muscles has been used to provide basic, voluntary hand grasp to hundreds of human patients. Current approaches typically grade pre-programmed patterns of muscle activation using simple control signals, such as those derived from residual movement or muscle activity. However, the use of such fixed stimulation patterns limits hand function to the few tasks programmed into the controller. In contrast, we are developing a system that uses neural signals recorded from a multi-electrode array implanted in the motor cortex; this system has the potential to provide independent control of multiple muscles over a broad range of functional tasks. Two monkeys were able to use this cortically controlled FES system to control the contraction of four forearm muscles despite temporary limb paralysis. The amount of wrist force the monkeys were able to produce in a one-dimensional force tracking task was significantly increased. Furthermore, the monkeys were able to control the magnitude and time course of the force with sufficient accuracy to track visually displayed force targets at speeds reduced by only one-third to one-half of normal. Although these results were achieved by controlling only four muscles, there is no fundamental reason why the same methods could not be scaled up to control a larger number of muscles. We believe these results provide an important proof of concept that brain-controlled FES prostheses could ultimately be of great benefit to paralyzed patients with injuries in the mid-cervical spinal cord.  相似文献   

15.
Since measurements of process variables are subject to measurements errors as well as process variability, data reconciliation is the procedure of optimally adjusting measured date so that the adjusted values obey the conservation laws and constraints. Thus, data reconciliation for dynamic systems is fundamental and important for control, fault detection, and system optimization. Attempts to successfully implement estimators are often hindered by serve process nonlinearities, complicated state constraints, and un-measurable perturbations. As a constrained minimization problem, the dynamic data reconciliation is dynamically carried out to product smoothed estimates with variances from the original data. Many algorithms are proposed to solve such state estimation such as the extended Kalman filter (EKF), the unscented Kalman filter, and the cubature Kalman filter (CKF). In this paper, we investigate the use of CKF algorithm in comparative with the EKF to solve the nonlinear dynamic data reconciliation problem. First we give a broad overview of the recursive nonlinear data dynamic reconciliation (RNDDR) scheme, then present an extension to the CKF algorithm, and finally address the issue of how to solve the constraints in the CKF approach. The CCRNDDR method is proposed by applying the RNDDR in the CKF algorithm to handle nonlinearity and algebraic constraints and bounds. As the sampling idea is incorporated into the RNDDR framework, more accurate estimates can obtained via the recursive nature of the estimation procedure. The performance of the CKF approach is compared with EKF and RNDDR on nonlinear process systems with constraints. The conclusion is that with an error optimization solution of the correction step, the reformulated CKF shows high performance on the selection of nonlinear constrained process systems. Simulation results show the CCRNDDR is an efficient, accurate and stable method for real-time state estimation for nonlinear dynamic processes.  相似文献   

16.
In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh–Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.  相似文献   

17.
 Pseudorandom white-noise stimulation followed by direct spectral estimation was used to obtain linear frequency response and coherence functions from paired, but dynamically different, spider mechanosensory neurons. The dynamic properties of the two neuron types were similar with either mechanical or electrical stimulation, showing that action potential encoding dominates the dynamics. Phase-lag data indicated that action potential initiation occurs more rapidly during mechanical stimulation, probably in the distal sensory dendrites. Total information capacity, calculated from coherence, as well as information per action potential, were both similar in the two types of neurons, and similar to the few available estimates from other spiking neurons. However, information capacity and information per action potential both depended strongly on neuronal firing rate, which has not been reported before. Received: 7 August 2000 / Accepted in revised form: 5 April 2001  相似文献   

18.
Experiments using intracellular recording of potentials from neurons of the primary auditory cortex of cats anesthetized with pentobarbital showed that under the influence of tones of characteristic frequency for the neuron under test, or of electrical stimulation of nerve fibers of the spiral ganglion, innervating the center of the receptive field of the neuron, transient excitation of the latter is followed by the development of prolonged (20–250 msec) inhibition. The cause of this inhibition is an IPSP arising in the neuron after the action potential. On the basis of data showing a close connection between inhibition and the preceding spike it is concluded that it arises through the participation of a mechanism of recurrent inhibition. During the action of tones of uncharacteristic frequency or electrical stimulation of the peripheral part of the receptive field of the neuron, a response consisting of EPSP-IPSP arises in the neuron. This IPSP is accompanied by inhibition of spontaneous activity of the neuron and its responses to testing stimulation. It has been shown that this inhibition is lateral in its genesis. Characteristics of these two types of inhibition are given.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 194–201, March–April, 1984.  相似文献   

19.
In the Squilla heart ganglion, the pacemaker is located in the rostral group of cells. After spontaneous firing ceased, the electrophysiological properties of these cells were examined with intracellular electrodes. Cells respond to electrical stimuli with all-or-none action potentials. Direct stimulation by strong currents decreases the size of action potentials. Comparison with action potentials caused by axonal stimulation and analysis of time relations indicate that with stronger currents the soma membrane is directly stimulated whereas with weaker currents the impulse first arises in the axon and then invades the soma. Spikes evoked in a neuron spread into all other neurons. Adjacent cells are interconnected by electrotonic connections. Histologically axons are tied with the side-junction. B spikes of adjacent cells are blocked simultaneously by hyperpolarization or by repetitive stimulation. Experiments show that under such circumstances the B spike is not directly elicited from the A spike but is evoked by invasion of an impulse or electrotonic potential from adjacent cells. On rostral stimulation a small prepotential precedes the main spike. It is interpreted as an action potential from dendrites.  相似文献   

20.
Functional electrical stimulation (FES) is capable of providing standing function to certain mid-thoracic paraplegics following spinal injury. To be of use in the community such systems require the provision of a mechanical support attached to the user's wheelchair so that it is available for use at all times. The design specification was such that the frame should fit a wide range of wheelchairs, not increase the external dimensions of the wheelchair, be easily removed to enable transfers, provide a safe, stable support once erect and be quick and simple both to erect and to fold away. Although primarily designed for use as part of the FES standing system, the frame is also applicable for patients with a number of other chronic neurological or arthritic conditions. As such the specification has been extended so that the design is suitable for users with tremor or reduced upper limb function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号