首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A total of 4589 leptocephali of the congrid eel, Ariosoma balearicum, were examined from 17 cruises in the western North Atlantic Ocean. Myomere counts made on 915 of these indicated there were two ranges of number of myomeres that appear to be associated with separate spawning populations. Those with the higher range (high count: 128–137) were consistently 70–100mm in length in the Sargasso Sea from February to April and 20–80mm in length in the northern Sargasso Sea and Gulf Stream from September to October. Those with the lower range (low count: 120–130) were rare in the northern and eastern Sargasso Sea where they had consistently greater lengths than high count leptocephali and were most abundant in the Florida Current and Providence Channel. The geographic distributions of size and myomere ranges in relation to hydrography provide strong support for the hypothesis that high count eels found along the South Atlantic Bight (SAB) migrate across the Florida Current to spawn in the northwest Sargasso Sea. This migratory pattern is similar to those of Anguilla rostrata and Conger oceanicus, which use the southern Sargasso Sea for development as larvae. However, the distribution of high count leptocephali suggests that they use the entire Sargasso Sea gyre as a development area as larvae before crossing the Florida Current and recruiting to the SAB. The low count eels inhabiting the Bahamas appear to spawn near the banks and their abundance in the Providence Channel and southwest Sargasso Sea suggests most are retained close to the Bahamas. These two distinct styles of spawning, distribution and recruitment of larvae are hypothesized to be related to the different hydrographic regimes of the two juvenile habitats and the resulting constraints on growth and recruitment of larvae. Vertebral and myomere counts reported from other areas suggest there are distinct populations in other regions of the North Atlantic Ocean.  相似文献   

2.
The spawning areas of the Atlantic freshwater eels were discovered about a century ago by the Danish scientist Johannes Schmidt who after years of searching found newly hatched larvae of the European eel, Anguilla anguilla, and the American eel, Anguilla rostrata, in the southern Sargasso Sea. The discovery showed that anguillid eels migrate thousands of kilometers to offshore spawning areas for reproduction, and that their larvae, called leptocephali, are transported equally long distances by ocean currents to their continental recruitment areas. The spawning sites were found to be related to oceanographic conditions several decades later by German and American surveys from 1979 to 1989 and by a Danish survey in 2007 and a German survey in 2011. All these later surveys showed that spawning occurred within a restricted latitudinal range, between temperature fronts within the Subtropical Convergence Zone of the Sargasso Sea. New data and re‐examinations of Schmidt's data confirmed his original conclusions about the two species having some overlap in spawning areas. Although there have been additional collections of leptocephali in various parts of the North Atlantic, and both otolith research and transport modelling studies have subsequently been carried out, there is still a range of unresolved questions about the routes of larval transport and durations of migration. This paper reviews the history and basic findings of surveys for anguillid leptocephali in the North Atlantic and analyses a new comprehensive database that includes 22612 A. anguilla and 9634 A. rostrata leptocephali, which provides a detailed view of the spatial and temporal distributions and size of the larvae across the Atlantic basin and in the Mediterranean Sea. The differences in distributions, maximum sizes, and growth rates of the two species of larvae are likely linked to the contrasting migration distances to their recruitment areas on each side of the basin. Anguilla rostrata leptocephali originate from a more western spawning area, grow faster, and metamorphose at smaller sizes of <70 mm than the larvae of A. anguilla, which mostly are spawned further east and can reach sizes of almost 90 mm. The larvae of A. rostrata spread west and northwest from the spawning area as they grow larger, with some being present in the western Caribbean and eastern Gulf of Mexico. Larvae of A. anguilla appear to be able to reach Europe by entering the Gulf Stream system or by being entrained into frontal countercurrents that transport them directly northeastward. The larval duration of A. anguilla is suggested to be quite variable, but gaps in sampling effort prevent firm conclusions. Although knowledge about larval behaviour is lacking, some influences of directional swimming are implicated by the temporal distributions of the largest larvae. Ocean–atmosphere changes have been hypothesized to affect the survival of the larvae and cause reduced recruitment, so even after about a century following the discovery of their spawning areas, mysteries still remain about the marine life histories of the Atlantic eels.  相似文献   

3.
This is the first report on the leptocephalus catches made during the last 15 years in North-and Central Atlantic during the course of 19 cruises of five different ships from Germany and one from Poland. This report comprises identification, geographical occurrence and abundance and in some cases depth preference, migratory routes and spawning area of Congridae in the North Atlantic. The largest part of this collection consists of 876Conger conger larvae. The likelihood that this species spawns in the Mediterranean is again confirmed. Decreasing density as well as increasing size from Gibraltar west-and north westward showed migration to be occurring in that direction. Age was determined by counting “daily rings” on the otoliths of up to 120-mm long larvae. It is suggested to be more than 300 days and is calculated to be 1 1/4 years for the largest larvae (TL=140–160 mm). Some 126 specimens of three otherConger species, i.e.C. oceanicus, C. triporiceps, C. esculentus, were identified in the collection. The major part originated from the western North Atlantic. The most numerous larvae, belonging to another genus of Congridae, wereAriosoma balearicum (n=265). They showed, also in consideration of other studies, quite a wide range in number of myomeres. Their systematic status is therefore uncertain, as is also the status of those known from the NW Indian Ocean and the NW Pacific. One larva, probably ofAriosoma selenops, of un-usually large size (TL=467 mm) and captured in the Iberian Basin is described and compared with specimens known from the literature. Two larvae of unknown identity were captured off NW Africa; they resembledA. balearicum but had too high a number of myomeres. The identity of most of theGnathophis larvae caught in the East Atlantic is uncertain. Leptocephali ofParaconger notialis in the East Atlantic, up to the area north of New Guinea, exhibited a higher number of myomeres than those known from the West Atlantic. Larvae ofXenomystax congroides (n-29), belonging to a population with a relatively high number of myomeres, were captured in the Sargasso Sea.  相似文献   

4.
Abundance, size and depth distributions of American eel(Anguilla rostrata) leptocephali collected in four transects across the Florida Current between the Straits of Florida and Cape Hatteras, North Carolina, were examined in order to assess the relative importance of two migration routes into the Gulf Stream system. A nine-fold increase in the abundance and an increase in the mean length of leptocephali collected in the Florida Current north of the Straits of Florida indicate that most leptocephali enter the Gulf Stream system directly from the Sargasso Sea rather than by a more southern route through the Bahama Islands. Leptocephali were concentrated in the upper 140 m at night and upper 350 m during the day. Wide vertical ranges in daytime collections precluded more refined estimation of vertical distribution. The collection of eight small leptocephali (11 to 17 mm total length) in the western Caribbean Sea is discussed in relation to the origin of leptocephali taken in the Straits of Florida.  相似文献   

5.
The European eel (Anguilla anguilla Linnaeus 1758) is a species typical for waters of Western Europe. Thanks to early expeditions on the Atlantic Ocean by the Danish biologist Johannes Schmidt who found small (<10mm) leptocephali larvae in the Sargasso Sea about 100 years ago, we have now a strong indication where the spawning site for this species is located. The American eel (Anguilla rostrata, LeSueur) also spawns in the Sargasso Sea. The spawning time and location of both species have been supported and refined in recent analyses of the available historical data. Subsequent ichthyoplankton surveys conducted by McCleave (USA) and Tesch (Germany) in the 1980s indicated an increase in the number of leptocephali <10 mm , confirming and refining the Sargasso Sea theory of Johannes Schmidt. Distinctions between the European and American eel are based on morphological characteristics (number of vertebrae) as well as molecular markers (allozymes, mitochondrial DNA and anonymous genomic-DNA. Although recognised as two distinct species, it remains unclear which mechanisms play a role in species separation during larval drift, and what orientation mechanism eels use during migration in the open sea. The current status of knowledge on these issues will be presented. The hypothesis that all European eel migrate to the Sargasso Sea for reproduction and comprise a single randomly mating population, the so called panmixia theory, was until recently broadly accepted. However, based on field observations, morphological parameters and molecular studies there are some indications that Schmidt’s claim of complete homogeneity of the European eel population and a unique spawning location may be an overstatement. Recent molecular work on European eel indicated a genetic mosaic consisting of several isolated groups, leading to a rejection of the panmixia theory. Nevertheless, the latest extensive genetic survey indicated that the geographical component of genetic structure lacked temporal stability, emphasising the need for temporal replication in the study of highly vagile marine species. Induced spawning of hormone treated eels in the aquarium was collective and simultaneous. In this work for the first time group spawning behaviour has ever been observed and recorded in eels. Studies in swim-tunnels indicate that eels can swim four to six times more efficiently than non-anguilliform fish such as trout. After a laboratory swim trial of eels over 5,500 km, the body composition did not change and fat, protein and carbohydrate were used in the same proportion. This study demonstrated for the first time that European eel are physiologically able of reaching the Sargasso Sea without feeding. Based on catches of newly hatched larvae, temperature preference tests and telemetry tracking of mature hormone treated animals, it can be hypothesised that spawning in the Sargasso Sea is collective and simultaneous, while presumably taking place in the upper 200 m of the ocean. Successful satellite tracking of longfin female eels in New Zealand has been performed to monitor migration pathways. Implementation of this new technology is possible in this species because it is three times larger than the European eel. In the future, miniaturisation of tagging technology may allow European eels to be tracked in time by satellite. The most interesting potential contribution of telemetry tracking of silver eels is additional knowledge about migration routes, rates, and depths. In combination with catches of larvae in the Sargasso Sea, it may elucidate the precise spawning locations of different eel species or groups. Only then, we will be able to define sustainable management issues by integrating this novel knowledge into spawners escapement and juvenile fishing quota.  相似文献   

6.
The extent to which pelagic fishes occurring in the Sargasso Sea and adjacent parts of the Atlantic prey on leptocephali (Anguilliformes) was investigated. Most of the fishes examined (c. 95%) were collected using a commercial pelagical trawl. The stomach contents of about 1000 fishes (25 species of 10 families), mostly belonging to the suborders Myctophoidei, Stomiatoidei and the order Anguilliformes, were examined. The remains of invertebrates, mainly crustaceans, molluscs, tunicates, chaetognaths, and siphonophores were found in 28.8 % of the stomachs. Fishes, mostly myctophids or fish remains, were observed in 11.2 % of the stomachs; 18.7 % contained unidentified items and 40.6 % were empty. Leptocephali (Ariosoma spp. andGnathophis sp.) were found in the alimentary tract of 0.5 % of the fishes examined, exclusively represented by the myctophid,Ceratoscopelus warmingii. This report indicates that the Sargasso Sea population ofAnguilla leptocephali, economically the most important eel, is not seriously affected by predation of oceanic fish species considered in this study.  相似文献   

7.
387 premetamorphic leptocephali of the familyAnguillidae caught off the west coast of Europe were examined taxonomically and compared with the youngest developmental stages of larvae ofAnguilla anguilla caught in the Sargasso Sea 1979 (Schoth, 1982). The total number of myomeres and the number of myomeres up to the third, opistonephritic blood vessel present features of this species which are significantly different from those of the larvae ofAnguilla rostrata and do not change during the whole larval phase. A combination of these two biometric features enables an infallible species identification of the AtlanticAnguilla larvae at all developmental stages. The number of predorsal and preanal myomeres, the preanal length and features of the head cannot be used for a distinction ofAnguilla larvae. One larva, 68.7 mm long, with 107 myomeres, and 44 myomeres to the opistonephritic blood vessel represents the hitherto southernmost record of anA. rostrata larva in the eastern North Atlantic.  相似文献   

8.
During the 1979 Sargasso Sea Expedition, 423 larvae ofAnguilla anguilla and 5 larvae ofA. rostrata were caught on three Atlantic transects and two cruises in the Sargasso Sea. Results of the identification of the larvae by myomere counts, and limits of the occurrence of I- and II-group larvae are presented. Four standard fishing depths are compared. A range shallower than 25 m was found to be the optimal fishing depth by night for both larval length groups. The geographic distribution of length group I was observed in central and eastern North Atlantic. Available data indicate a migration of these larvae in a north easterly direction. Length measurements of the II-group larvae taken from catches on the European continental slope during the same expedition support this assumption.  相似文献   

9.
Diatoms are important components of the marine food web and one of the most species-rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the genera Bacteriastrum, Haslea, Hemiaulus, Pseudo-nitzschia, and Nitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.  相似文献   

10.
We report for the first time a highly divergent lineage in the Caribbean Sea for the bull shark (Carcharhinus leucas) based on the analysis of 51 mitochondrial DNA genomes of individuals collected in the western North Atlantic. When comparing the mtDNA control region obtained from the mitogenomes to sequences reported previously for Brazil, the Caribbean lineage remained highly divergent. These results support the existence of a discrete population in Central America due to a phylogeographic break separating the Caribbean Sea from the western North Atlantic, Gulf of Mexico and South America.  相似文献   

11.
Eels are unique species in the biological world. The two North Atlantic eel species, the American eel (Anguilla rostrata) and the European eel (A. anguilla), occupy a broad range of habitats from the Caribbean to Greenland in the western Atlantic and from Morocco to Iceland in the eastern Atlantic, respectively. North Atlantic eels have a catadromous life cycle, spawning only in the Sargasso Sea and spending the majority of their lives in continental (fresh, brackish and coastal) waters. Despite such a wide distribution range, North Atlantic eels have been regarded as a textbook example of panmictic species. In contrast with the large amount of population genetic studies testing the panmixia hypothesis in the European eel, a relatively modest effort has been given to study the population structure of the American eel. In this issue of Molecular Ecology, Côté et al. ( 2013 ) present the most comprehensive American eel data set to date, which includes samples of different life stages obtained throughout all its distribution range in North America. Results show a total lack of genetic differentiation among samples and provide decisive evidence for panmixia in the American eel.  相似文献   

12.
The European eel (Anguilla anguilla L.) is distributed in coastal and inland habitats all over Europe, but spawns in the Sargasso Sea and is thus affected by both continental and oceanic factors. Since the 1980s a steady decline has been observed in the recruitment of glass eels to freshwater and in total eel landings. The eel is considered as critically endangered on the International Union for the Conservation of Nature and Natural Resources Red List of species. The Skagerrak beach seine survey from Norway constitutes the longest fishery-independent dataset on yellow/silver eels (starting in 1904). The Skagerrak coastal region receives larvae born in the Sargasso Sea spawning areas that have followed the Gulf Stream/North Atlantic Drift before they penetrate far into the North Sea. The Skagerrak coastal time series is therefore particularly valuable for exploring the impacts of oceanic factors on fluctuations in eel recruitment abundance. Analyses showed that Sargasso Sea surface temperature was negatively correlated with eel abundance, with a lag of 12 years revealing a cyclic and detrimental effect of high temperatures on the newly hatched larvae. The North Atlantic Oscillation index and inflow of North Atlantic water into the North Sea were negatively correlated with eel abundance, with a lag of 11 years. Increased currents towards the North Atlantic during high North Atlantic Oscillation years may send larvae into the subpolar gyre before they are ready to metamorphose and settle, resulting in low recruitment in the northern part of the distribution area for these years. The Skagerrak time series was compared with glass eel recruitment to freshwater in the Netherlands (Den Oever glass eel time series), and similar patterns were found revealing a cycle linked to changes in oceanic factors affecting glass eel recruitment. The recent decline of eels in the Skagerrak also coincided with previously documented shifts in environmental conditions of the North Sea ecosystem.  相似文献   

13.
This study presents data and estimates reproductive parameters of the sailfish Istiophorus platypterus (Shaw, 1792) in the western Atlantic, useful for future stock assessments of the species in the Atlantic Ocean. During the period 2006–2011, a total of 1132 fish were sampled by scientific observers on board Venezuelan and Brazilian longline vessels and from artisanal fisheries based out of Cumaná, Puerto La Cruz and Playa Verde, Venezuela and Cabo Frio, Rio de Janeiro, Brazil. The ovaries of 543 females were classified into five ovarian development phases based on microscopic analysis of the most advanced group of oocytes. Generalized additive models were applied to the gonadal index and sex ratio data in order to assess spatio-temporal trends of the reproductive activity and identify the spawning areas. Space–time effect was a significant factor contributing to changes in sex ratio and reproductive activity. Spawning activity was observed in two distinct areas. On the south-east Brazilian coast spawning peaked during December–February, while in the south-eastern Caribbean Sea spawning occurred between March and September, with its peak in March and April. Using a Bayesian approach, size at 50% maturity was estimated to be 146.12?cm (credibility interval of 95%, 138.45–152.09?cm). Batch fecundity ranged from 436,800 to 2,492,500 hydrated oocytes per female. This study confirms multiple aggregation spawning for this species in the western Atlantic Ocean.  相似文献   

14.
Synopsis The status of knowledge of spawning among the five shallow waterChaetodon species in the western Atlantic is reviewed. Spawning has been observed for three species in Puerto Rico, St. Croix and the Bahamas, with possible courtship in a fourth.Chaetodon aculeatus spawned near the time of sunset over objects on the reef as single female/male pairs or as two females and one male, with pair spawning in rapid succession. Spawning occurred during much of the lunar month from February to April and it is uncertain whether any lunar periodicity to spawning exists. Male-male aggression was noted. Spawning sites (coral heads) were alternated daily and it is likely that females spawn only once every two days. A single female produced as many as 2090 eggs in a single spawning.Chaetodon capistratus spawned during much of the lunar month from February to April. It spawned about 5 min afterC. aculeatus, occasionally using the same sites, and alternated sites daily. A female produced as many as 3710 eggs in one spawning.Chaetodon striatus spawned from February to April but it is unknown if it has any lunar spawning cycle. No predation attempts by piscivores on spawning adults were seen. Predation byMelichthys niger on eggs ofC. striatus occurred. No egg predation was observed forC. aculeatus andC. capistratus. With an assumed four month reproductive season, alternate day spawning and observed egg production values,C. aculeatus andC. capistratus produce respectively about 100 000 and 200 000 eggs per large female per year. The reproductive strategy of smaller species may be to produce moderate numbers of eggs per day over a spawning season of at least a few months while larger species may produce more eggs per day for a shorter period.  相似文献   

15.
European eels (Anguilla anguilla) undertake spawning migrations of more than 5000 km from continental Europe and North Africa to frontal zones in the Sargasso Sea. Subsequently, the larval offspring are advected by large-scale eastward ocean currents towards continental waters. However, the Sargasso Sea is oligotrophic, with generally low plankton biomass, and the feeding biology of eel larvae has so far remained a mystery, hampering understanding of this peculiar life history. DNA barcoding of gut contents of 61 genetically identified A. anguilla larvae caught in the Sargasso Sea showed that even the smallest larvae feed on a striking variety of plankton organisms, and that gelatinous zooplankton is of fundamental dietary importance. Hence, the specific plankton composition seems essential for eel larval feeding and growth, suggesting a linkage between eel survival and regional plankton productivity. These novel insights into the prey of Atlantic eels may furthermore facilitate eel larval rearing in aquaculture, which ultimately may replace the unsustainable use of wild-caught glass eels.  相似文献   

16.
Seventy-two core tops and grab samples from the western North Atlantic were analyzed to determine what aspects of planktonic foraminiferal abundance and diversity are most closely related to ocean circulation. Some species appear to be reliable indicators of the Gulf Stream, a warm surface current. Both Globorotalia menardii and Globigerinoides sacculifer have their highest abundances under the main trend of the Gulf Stream. Globorotalia inflata reaches high abundances in the cold slope water north of the Gulf Stream but its distribution is not as continuous as the Gulf Stream indicators.Contoured values of species diversity, the Shannon diversity index, and species equitability also reflect surface circulation. A plot of species diversity (number of species) shows a poorly defined region of high diversity beneath the major trend of the Gulf Stream. Use of the Shannon diversity index enhances and clarifies this region of high diversity. A map of species equitability shows a broad belt of low species dominance (high equitability) beneath the Gulf Stream. North of the Gulf Stream, a tongue of high dominance (low equitability) corresponds to the increased relative abundance of Globorotalia inflata.High diversity of planktonic foraminifera in bottom sediments characterizes the warm shifting surface currents of the Gulf Stream; low diversity is typical of slope and Sargasso Sea waters. Low equitability (high species dominance) indicates either cold currents or gyre center waters. Maps of foraminiferal diversity and equitability for other intervals of geologic time may be useful in tracing the evolution of ocean circulation.  相似文献   

17.
Lemon sole Microstomus kitt is a commercially valuable flatfish species that occurs in shelf waters around the northeast Atlantic. Only the most basic life-history information is available for the North Sea. Spawning is generally assumed to occur between early May and October, with a peak between May and August. Lemon sole larvae have been found in the water column in the northern North Sea in winter during standard surveys. Larvae captured in November/December 2016 and January/February 2017 using the International Council for the Exploration of the Seas standard 2 m Midwater Ring trawls (MIK) were analysed to gain a better understanding of the pelagic early life-history stages of lemon sole, especially in relation to the timing of spawning and the dispersal of overwintering larvae. Larval age was estimated from sagittal otolith primary increment counts. The larvae caught in November/December ranged in nominal age from 4 to 45 days post-hatching which suggests that spawning continues into late October and November. Most, but not all, of the larvae caught in January/February were post metamorphosis, and the difference in age between the two sampling dates was consistent with the elapsed time between samplings. The estimated hatching dates confirm that lemon sole spawning extends into late autumn in the northern North Sea, with overwintering larvae in all developmental stages. Drift modelling of eggs and larvae released at historically documented spawning grounds in the northern North Sea suggests that these grounds are also the source for all of the larvae sampled during the 2016–2017 surveys.  相似文献   

18.
Phage-host cross-reaction tests were performed with 774 bacterial strains and 298 bacteriophages. The bacteria (bacteriophages) were isolated at different times from water samples collected in the Atlantic Ocean between the European continental shelf and the Sargasso Sea: 733 (258) strains; in the North Sea near Helgoland: 31 (31) strains; and in the Bay of Biscay: 10 (9) strains. Of the Atlantic Ocean bacteria 326 were found to be susceptible to one or more Atlantic Ocean bacteriophage(s). The bacteriophage sensitivity patterns of these bacteria vary considerably, placing 225 of them in two large clusters of bacteriophage-host systems. Taking all into account, 250 of the 326 Atlantic Ocean bacteria are different from each other. This high degree of variation among the bacteria distinguishes microbial populations derived from widely separated eastern and western regions of the Atlantic Ocean. It also sets apart from each other the populations derived from samples collected at successive stations some 200 miles apart, although to a lesser degree. With bacterial populations found from samples collected on the way back and forth between Europe and the Sargasso Sea a gradual change was observed from "western" phage sensitivity patterns to "eastern" ones. Sixty-nine Atlantic Ocean bacteria are sensitive to bacteriophages isolated from the North Sea and the Bay of Biscay; of these only 26 strains are also susceptible to Atlantic Ocean phages. The interpretation of the results is based on the hydrographical conditions prevailing in the northern Atlantic Ocean including the North Sea, and on the assumption that the microbial populations investigated have undergone genetic changes while being transported within water masses from west to east.  相似文献   

19.
The taxonomic, morphological and meristic features of a dark eel caught by commercial trawling off the Gulf of Patti, southern Tyrrhenian Sea, Mediterranean Sea, February 17, 2017, showed it to be a female Conger conger. Histological analysis of gonads demonstrated that the individual was in a post-spawning phase. X-ray radiographs showed widespread decalcification of skeleton and teeth loss, confirming a strong mobilisation of somatic energy reserves needed for reproductive development.  相似文献   

20.
Day- and night-time vertical distributions and their ontogeneticchanges in Anguilla leptocephali and other common species ofleptocephali were determined and compared during five cruisesin the Sargasso Sea using an opening - closing 2-m ring netto sample discrete depth strata between 0 m and 350 m deep.No difference in vertical distribution was ever found betweenAnguilla rostrata (American eel) and A. anguilla (European eel).Anguilla leptocephali <5 mm long did not exhibit a diel verticalmigration, as they were distributed between 50 m and 300 m bothby day and by night. The vertical distribution of these smalllepto-cephali is probably roughly representative of the depthdistribution of adult spawning. Anguilla  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号