首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. F. Lasko  M. L. Pardue 《Genetics》1988,120(2):495-502
The region of the second chromosome of Drosophila melanogaster defined by Df(2R)vgB was screened for recessive lethal and visible mutations. Fifty-eight new recessive alleles fall into 17 complementation groups. Many new vg alleles were also isolated in a screen for new vg deficiencies. The breakpoints of the new vg deficiencies were nonrandomly distributed. The distal breakpoints of twelve of 20 deficiencies overlapping Df(2R)vgB are genetically identical to that of Df(2R)vgD, coinciding with the position of a complex, pleiotropic locus, l(2)49Ea-Psc-Su(z)2.  相似文献   

2.
In this study we have generated a dose-response curve for the formaldehyde induction of recessive lethal mutations in the eT1(III;V)-balanced region of C. elegans. We have mapped 96 out of 112 formaldehyde-induced lesions to either LGIII or LGV and genetically analyzed 31 lesions that mapped to LGV. Our findings showed that a 4-h treatment with 0.1% formaldehyde gave the best mutation induction frequency with the least side effects. We found that formaldehyde induced putative point mutations, deficiencies and more complex lesions in C. elegans. We isolated 11 putative point mutations, 3 of which defined new genes and 8 were alleles of known genes. One of the new genes, let-450, is currently the left-most known gene on LGV. We also isolated 5 deficiencies. Our formaldehyde-induced lesions increased the number of zones in the eT1-balanced region of LGV from 22 to 34.  相似文献   

3.
The organization of essential genes in the unc-22 region, defined by the deficiency sDf2 on linkage group IV, has been studied. Using the balancer nT1 (IV;V), which suppresses recombination over 49 map units, 294 lethal mutations on LGIV(right) and LGV(left) were recovered using EMS mutagenesis. Twenty-six of these mutations fell into the unc-22 region. Together with previously isolated lethal mutations, there is now a total of 63 lethal mutations which fall into 31 complementation groups. Mutations were positioned on the map using eight overlapping deficiencies in addition to sDf2. The lethal alleles and deficiencies in the unc-22 region were characterized with respect to their terminal phenotypes. Mapping of these lethal mutations shows that sDf2 deletes a minimum of 1.8 map units and a maximum of 2.5 map units. A minimum estimate of essential gene number for the region using a truncated Poisson calculation is 48. The data indicate a minimum estimate of approximately 3500 essential genes in the Caenorhabditis elegans genome.  相似文献   

4.
Characterization of a group of dominant second chromosome suppressor of position-effect variegation (PEV) (Su(var)) mutants has revealed a variety of interesting properties, including: maternal-effect suppression of PEV, homozygous lethality or semilethality and male-specific hemizygous lethality, female infecundity, acute sensitivity to the amount of heterochromatin in the cell and sensitivity to sodium butyrate. Deficiency/duplication mapping and complementation tests have revealed that eight of the mutants define at least two genes in section 31 of the left arm of chromosome 2 and they suggest that a ninth corresponds to an additional nonessential Su(var) gene within or near this region. The effects of specific deficiencies and a duplication on PEV indicate that the expression of one or more of the Su(var) genes in this region of the chromosome is dose-dependent, i.e., capable of haplo-abnormal suppression and triplo-abnormal enhancement. Interestingly, the appearance of certain visible phenotypes among a subset of the mutants suggests that they may possess antimorphic properties. Our results are consistent with the hypothesis that two of these Su(var) genes encode structural components of heterochromatin. We also report that two previously isolated mutants located in 31E and 31F-32A act as recessive suppressors of PEV.  相似文献   

5.
CAENORHABDITIS ELEGANS Deficiency Mapping   总被引:22,自引:12,他引:10       下载免费PDF全文
Six schemes were used to identify 80 independent recessive lethal deficiencies of linkage group (LG) II following X-ray treatment of the nematode Caenorhabditis elegans. Complementation tests between the deficiencies and ethyl methanesulfonate-induced recessive visible, lethal and sterile mutations and between different deficiencies were used to characterize the extents of the deficiencies. Deficiency endpoints thus helped to order 36 sites within a region representing about half of the loci on LG II and extending over about 5 map units. New mutations occurring in this region can be assigned to particular segments of the map by complementation tests against a small number of deficiencies; this facilitates the assignment of single-site mutations to particular genes, as we illustrate. Five sperm-defective and five oocyte-defective LG II sterile mutants were identified and mapped. Certain deficiency-by-deficiency complementation tests allowed us to suggest that the phenotypes of null mutations at two loci represented by visible alleles are wild type and that null mutations at a third locus confer a visible phenotype. A segment of LG II that is about 12 map units long and largely devoid of identified loci seems to be greatly favored for crossing over.  相似文献   

6.
The suppressor of position effect variegation (PEV) locus Su-var(3)6 maps to 87B5-10. The breakpoints of deficiencies that define this interval have been placed on a 250-kb molecular map of the region. The locus is allelic to the ck19 complementation group previously shown to encode a type 1 serine-threonine protein phosphatase (PP1) catalytic subunit. When introduced into flies by P element-mediated transformation, a 5.8-kb genomic fragment carrying this gene overcomes the suppressor phenotype of Su-var(3)6(01) and recessive lethality of all mutations of the locus. Four of the mutant alleles at the locus show a broad correlation between high levels of suppression of PEV, a high frequency of aberrant mitosis and low PP1 activity in larval extracts. However, some alleles with low PP1 activity show weak suppression of PEV with a high frequency of abnormal mitosis, whereas others show strong suppression of PEV with normal mitosis. The basis for these disparate phenotypes is discussed.  相似文献   

7.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

8.
In the genome of Drosophila melanogaster there is a single locus, Triplo-lethal (Tpl), that causes lethality when present in either one or three copies in an otherwise diploid animal. Previous attempts to mutagenize Tpl produced alleles that were viable over a chromosome bearing a duplication of Tpl, but were not lethal in combination with a wild-type chromosome, as deficiencies for Tpl are. These mutations were interpreted as hypomorphic alleles of Tpl. In this work, we show that these alleles are not mutations at Tpl; rather, they are dominant mutations in a tightly linked, but cytologically distant, locus that we have named Suppressor-of-Tpl (Su(Tpl)). Su(Tpl) mutations suppress the lethality associated with three copies of the Triplo-lethal locus and are recessive lethal. We have mapped Su(Tpl) to the approximate map position 3-46.5, within the cytological region 76B-76D.  相似文献   

9.
The chromosomal region 36C on 2L contains two maternal-effect loci, dorsal (dl) and Bicaudal-D (Bic-D), which are involved in establishing polarity of the Drosophila embryo along the dorsal-ventral and anterior-posterior axes, respectively. To analyze the region genetically, we isolated X-ray-induced dorsal alleles, which we recognized by virtue of the haplo-insufficient temperature-sensitive dorsal-dominant phenotype in progeny of single females heterozygous for a mutagenized chromosome. From the 20,000 chromosomes tested, we isolated three deficiencies, two inversions with breakpoint in dl and one apparent dl point mutant. One of the deficiencies, Df(2L)H20 (36A6,7; 36F1,2) was used to screen for EMS-induced lethal- and maternal-effect mutants mapping in the vicinity of dl and Bic-D. We isolated 44 lethal mutations defining 11 complementation groups. We also recovered as maternal-effect mutations four dl alleles, as well as six alleles of quail and one allele of kelch, two previously identified maternal-effect genes. Through complementation tests with various viable mutants and deficiencies in the region, a total of 18 loci were identified in an interval of about 30 cytologically visible bands. The region was subdivided into seven subregions by deficiency breakpoints. One lethal complementation group as well as the two maternal loci, Bic-D and quail, are located in the same deficiency interval as is dl.  相似文献   

10.
The Punch locus of Drosophila melanogaster which encodes the pteridine biosynthetic enzyme, GTP cyclohydrolase, is genetically complex. Lethal alleles of the locus resolve into an array of interallelic complementation groups, and at least one class of mutations is developmentally specific, affecting GTP cyclohydrolase activity only in the heads of adults. All previously isolated Punch alleles were identified on the basis of a mutant eye color phenotype. By screening mutagenized chromosomes over Punch region deficiencies, we have now isolated new alleles on the basis of lethal and visible phenotypes. Most of these alleles fall into previously identified genetic classes, but two new classes of mutations were also found. One class contains two alleles that behave as dominant lethal mutations in some genetic backgrounds. The other class represents a second developmentally specific set of alleles that affect the function of the Punch locus only during embryogenesis.  相似文献   

11.
12.
An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)RU8). In addition, we found 6 new complementation groups with strong defects in adult-muscle morphology; we named these ifm(2)RS1 to ifm(2)RS6. All mutant lines were mapped by meiotic recombination, and 5 of the 6 new complementation lines were mapped using chromosome deficiencies. ifm(2)RS1 maps to a region that harbors ifm(2)RU4 (a mutation that was isolated previously); however, theses are not alleles because each complements the other mutation, and the mutant-muscle phenotype is very different. We used direct screening under polarized light to find recessive mutations; although this method was labor intensive, it can be used to identify recessive genes involved in myogenesis, unlike screens for flightlessness or wing-position defects. This screen identifies regions on the second chromosome that harbor probable genes that are likely expressed in the mesoderm and are thought to be involved in myogenesis. This screen has generated valuable resources that will help us to understand the role of many molecular players involved in myogenesis.  相似文献   

13.
mod(mdg4), also known as E(var)3-93D, is involved in a variety of processes, such as gene silencing in position effect variegation (PEV), the control of gypsy insulator sequences, regulation of homeotic gene expression, and programmed cell death. We have isolated a large number of mod(mdg4) cDNAs, representing 21 different isoforms generated by alternative splicing. The deduced proteins are characterized by a common N terminus of 402 amino acids, including the BTB/POZ-domain. Most of the variable C termini contain a new consensus sequence, including four positioned hydrophobic amino acids and a Cys(2)His(2) motif. Using specific antibodies for two protein isoforms, we demonstrate different distributions of the corresponding proteins on polytene chromosomes. Mutations in the genomic region encoding exons 1-4 show enhancement of PEV and homeotic transformation and affect viability and fertility. Homeotic and PEV phenotypes are enhanced by mutations in other trx-group genes. A transgene containing the common 5' region of mod(mdg4) that is present in all splice variants known so far partially rescues the recessive lethality of mod(mdg4) mutant alleles. Our data provide evidence that the molecular and genetic complexity of mod(mdg4) is caused by a large set of individual protein isoforms with specific functions in regulating the chromatin structure of different sets of genes throughout development.  相似文献   

14.
J. O''Donnell  R. Boswell  T. Reynolds    W. Mackay 《Genetics》1989,121(2):273-280
Eleven chromosomal deficiencies and several rearrangements in the Pu-tud region of chromosome 2R have been generated and examined cytologically. The Pu locus has been localized to chromosome bands 57C5-6 and tud to 57C7-8. Mutagenesis within the region defined by the deletion intervals has resulted in the isolation of 92 new lethal mutations. Seventy-six of these mutations have been separated into 16 complementation groups that have been ordered and placed cytologically by deletion mapping. All new alleles fully complement tud for both lethal and grandchildless phenotypes. The largest number of new mutations, a total of 25, are Pu alleles.  相似文献   

15.
S. Boynton  T. Tully 《Genetics》1992,131(3):655-672
Genetic dissection of learning and memory in Drosophila has been limited by the existence of ethyl methanesulfonate (EMS)-induced mutations in only a small number of X-linked genes. To remedy this shortcoming, we have begun a P element mutagenesis to screen for autosomal mutations that disrupt associative learning and/or memory. The generation of "P-tagged" mutant alleles will expedite molecular cloning of these new genes. Here, we describe a behavior-genetic characterization of latheoP1, a recessive, hypomorphic mutation of an essential gene. latheoP1 flies perform poorly in olfactory avoidance conditioning experiments. This performance deficit could not be attributed to abnormal olfactory acuity or shock reactivity-two task-relevant "peripheral" behaviors which are used during classical conditioning. Thus, the latheoP1 mutation appears to affect learning/memory specifically. Consistent with chromosomal in situ localization of the P element insertion, deficiencies of the 49F region of the second chromosome failed to complement the behavioral effect of the latheoP1 mutation. Further complementation analyses between latheoP1 and lethal alleles, produced by excision of the latheoP1 insert or by EMS or gamma-rays, in the 49F region mapped the latheo mutation to one vital complementation group. Flies heterozygous for latheoP1 and one of two EMS lethal alleles or one lethal excision allele also show the behavioral deficits, thereby demonstrating that the behavioral and lethal phenotypes co-map to the same locus.  相似文献   

16.
M. Han  R. V. Aroian    P. W. Sternberg 《Genetics》1990,126(4):899-913
During induction of the Caenorhabditis elegans hermaphrodite vulva by the anchor cell of the gonad, six multipotent vulval precursor cells (VPCs) have two distinct fates: three VPCs generate the vulva and the other three VPCs generate nonspecialized hypodermis. Genes that control the fates of the VPCs in response to the anchor cell signal are defined by mutations that cause all six VPCs to generate vulval tissue (Multivulva or Muv) or that cause all six VPCs to generate hypodermis (Vulvaless or Vul). Seven dominant Vul mutations were isolated as dominant suppressors of a lin-15 Muv mutation. These mutations are dominant alleles of the gene let-60, previously identified only by recessive lethal mutations. Our genetic studies of these dominant Vul recessive lethal mutations, recessive lethal mutations, intragenic revertants of the dominant Vul mutations, and the closely mapping semi-dominant multivulva lin-34 mutations suggest that: (1) loss-of-function mutations of let-60 are recessive lethal at a larval stage, but they also cause a Vul phenotype if the lethality is rescued maternally by a lin-34 gain-of-function mutation. (2) The dominant Vul alleles of let-60 are dominant negative mutations whose gene products compete with wild-type activity. (3) lin-34 semidominant Muv alleles are either gain-of-function mutations of let-60 or gain-of-function mutations of an intimately related gene that elevates let-60 activity. We propose that let-60 activity controls VPC fates. In a wild-type animal, reception by a VPC of inductive signal activates let-60, and it generates into a vulval cell type; in absence of inductive signal, let-60 activity is low and the VPC generates hypodermal cells. Our genetic interaction studies suggest that let-60 acts downstream of let-23 and lin-15 and upstream of lin-1 and lin-12 in the genetic pathway specifying the switch between vulval and nonvulval cell types.  相似文献   

17.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

18.
19.
Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster, eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua 1 and pur 1, which yield auxotrophic mutations.--The eight new mutations have been characterized phenotypically in double heterozygotes with gua 1, pur 1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2. The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.--Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions.  相似文献   

20.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号