首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

2.
Two proteic inhibitors (I and II) of serine proteases have been purified from the parasitic worm Parascaris equorum by affinity chromatography on immobilized trypsin followed by preparative electrophoresis. They have an apparent relative molecular mass of 9000 and 7000 as determined by gel filtration, a slightly acid isoelectric point (5.5 and 6.1) and a similar amino acid composition. Both inhibitors lack serine, methionine and tyrosine. They bind bovine trypsin extremely strongly with an association constant, Ka, larger than 10(9) M-1, and form a 1:1 complex with this protease. The Ka values for the binding to bovine chymotrypsin are approximately 3.3 X 10(8) M-1 (inhibitor I) and approximately 2 X 10(6) M-1 (inhibitor II). Inhibitor I interacts also with porcine elastase (Ka approximately 5 X 10(7) M-1), while inhibitor II is inactive towards this enzyme.  相似文献   

3.
Four protein protease inhibitors (I, II, III, IV) having low molecular weights (10 600-6500) and basic isoelectric points were isolated by affinity chromatography from bovine spleen. Inhibitor IV was identified as the basic pancreatic trypsin inhibitor (Kunitz inhibitor); the presence and distribution of components I, II and III vary in the different bovine organs. Spleen inhibitors I, II, III and IV were purified by ion-exchange chromatography; they form 1:1 complexes with trypsin and inhibit enzymatic activity of trypsin, chymotrypsin and kallikrein. Inhibitors I, II and III contain carbohydrate moieties (7-4%) covalently bound to the polypeptide chain. Specific basic pancreatic trypsin inhibitor antiserum has shown the complete identity between inhibitor IV and the basic pancreatic trypsin inhibitor, while partial cross-reactivity between the basic pancreatic trypsin inhibitor and inhibitors I, II and III can be seen from a double immunodiffusion test.  相似文献   

4.
A purified preparation of trypsin inhibitor was obtained from the hemolymph of a solitary ascidian, Halocynthia roretzi, by a procedure including trypsin-Sepharose chromatography, DEAE-cellulose chromatography, and Sephadex G-50 gel filtration. The product was a mixture of two isoinhibitors, inhibitors I and II. They were separated from each other by high-performance liquid chromatography on an anion exchanger column, and showed almost identical amino acid compositions. They were also indistinguishable in terms of apparent specific inhibitory activity against bovine trypsin when the activity was assayed with the inhibitors at rather high concentrations (greater than 50 nM). A large difference was observed between them, however, in the inhibition constants, which correspond to the dissociation constants of the inhibitor-trypsin complexes; the inhibition constant of inhibitor I was 90 pM, whereas that of inhibitor II was 4.7 nM. The molecular weights of inhibitors I and II were estimated to be 6,000 and 4,500, respectively, by SDS-polyacrylamide gel electrophoresis, while an almost identical value, 9,000, was obtained for both of them by gel filtration. The molecular weight calculated from the amino acid compositions was 5,929 for both. The isoelectric points were also identical, that is about 5.0. Both of the inhibitors were heat-stable. Ascidian inhibitor I also inhibited other trypsin-like enzymes of mammalian origin, as well as those of ascidian origin.  相似文献   

5.
Two heat-stable inhibitors (a and b) of phosphoprotein phosphatases I and II from Mucor rouxii were isolated from mycelium of the fungus. They were partially purified from extracts by heating, DEAE-cellulose chromatography, and Sephadex G-75 gel filtration. The molecular weights of inhibitors a and b, estimated by gel filtration, are 5,000 and 20,000 respectively. Inhibitor a acts similarly on both enzymes while inhibitor b is relatively more active on enzyme II. Storage of inhibitor b at -20 degrees C for several weeks resulted in a partial conversion to a lower-molecular-weight form with properties similar to those of inhibitor a.  相似文献   

6.
The trypsin inhibitor fraction from cowpea (Vigna unguiculata) has been purified and characterized. Although the total trypsin inhibitor as purified by affinity chromatography on immobilised trypsin was shown to be heterogeneous by gel electrophoresis and isoelectric focusing as well as by function, it was relatively homogeneous in MW (ca 17 000) on gel filtration. The total trypsin inhibitor was divided into inhibitors active against trypsin only and active against trypsin and chymotrypsin by affinity chromatography on immobilised chymotrypsin. The ‘trypsin-only’ inhibitor was the major component of the total trypsin inhibitor. It was shown by isoelectric focusing and gel electrophoresis to contain several isoinhibitors. Determination of the combining weight of this inhibitor and investigation of the complexes formed with trypsin by gel filtration indicated the presence of two protease binding sites per inhibitor molecule. The chymotrypsin/trypsin inhibitor was also shown to be composed of several isoinhibitors. On the basis of gel electrophoresis and gel filtration in dissociating and non-dissociating media both inhibitors were considered to be dimeric molecules with the subunits linked by disulphide bonds; this implies that the ‘trypsin-only’ inhibitor has one binding site per subunit.  相似文献   

7.
A crystalline protein-proteinase inhibitor has been isolated from seeds of Pinto bean (Phaseolus vulgaris cultvar. Pinto). It has an average molecular weight of 19 000 as estimated by gel filtration. This crystalline inhibitor is highly active against both bovine pancreatic trypsin and alpha-chymotrypsin. Complexes of both trypsin-inhibitor and alpha-chymotrypsin-inhibitor have been isolated. The inhibitor which was derived from the dissociated trypsin-inhibitor complex was only 62% as effective as the original compound against either enzyme. In contrast, the inhibitor obtained from alpha-chymotrypsin-inhibitor complex retained its full original inhibitory activity for trypsin, but only 25% of its original activity against alpha-chymotrypsin. The dissociated inhibitor from alpha-chymotrypsin-inhibitor compex, despite its full inhibitory activity, had been modified to such an extent that it could no longer form any precipitable complex with trypsin. The crystalline protein-proteinase inhibitor is not homogeneous and has been resolved into two distinct inhibitors in terms of their physical and chemical properties. These two inhibitors are designated as Pinto bean proteinase inhibitor I and II and their respective minimum molecular weights are 9100 and 10 000. They differ most strikingly in their amino acid composition in that inhibitor II is void of both valine and methionine.  相似文献   

8.
A cDNA containing the complete amino acid-coding region of wound-induced tomato Inhibitor II was constructed in the plasmid pUC9. The open reading frame codes for 148 amino acids including a 25-amino acid signal sequence preceding the N-terminal lysine of the mature Inhibitor II. The Inhibitor II sequence exhibits two domains, one domain having a trypsin inhibitory site and the other a chymotrypsin inhibitory site, apparently evolved from a smaller gene by a process of gene duplication and elongation. The amino acid sequence of tomato leaf Inhibitor II exhibits homology with two small proteinase inhibitors isolated from potato tuber and an inhibitor from eggplant. The small potato tuber inhibitors are homologous with 33 amino acids of the N-terminal domain and 19 amino acids from the C-terminal domain. Two identical nucleotide sequences of Inhibitor II cDNA in the 3' noncoding region were present that were also found in an Inhibitor I cDNA. These include an atypical polyadenylation signal, AATAAG, and a 10-base palindromic sequence, CATTATAATG, for which no function is yet known.  相似文献   

9.
Five protease inhibitors, I--V, in the molecular weight range 7000--8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I--V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibit chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residued of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.  相似文献   

10.
Two trypsin inhibitors from acid-treated buffalo seminal plasma were purified by gel filtration and affinity chromatography. These acid-stable trypsin inhibitors having charge heterogeneity were homogeneous with respect to size as revealed by gel filtration and SDS-PAGE. Gel filtration data suggest molecular weight value of 9,900 Da for inhibitor I and 10,900 Da for inhibitor II. Molecular weight estimated by SDS-PAGE was found to be 10,600 Da and 11,200 Da for inhibitors I and II, respectively. The hydrodynamic properties such as Stokes radii (1.58 nm and 1.62 nm); intrinsic viscosity (2.5725 ml/g and 2.5025 ml/g) and diffusion coefficient (13.499 x 10(-11) m2/sec. and 13.166X10(-11) m2/sec) respectively for inhibitor I and II were determined by analytical gel filtration. These inhibitors were fairly thermostable and could not be stained by PAS reagent. Both the inhibitors were found to inhibit buffalo acrosin but not bovine chymotrypsin.  相似文献   

11.
5'-Nucleotidase (EC 3.1.3.5) is widely distributed in nature. However, it could not be detected in rat liver, because of the presence of specific inhibitors. Such inhibitors were also found in other tissues of rat, but at lower concentrations than that in the liver. The inhibitor activity was enriched in the membrane fraction and was also present in the cytosol fraction. It was sensitive to treatment with 6M urea and trypsin, while heating in a boiling water bath for 10 min or dialysis reduced the activity only slightly. Gel filtration or Sephadex G-50 yielded two types of inhibitors. Inhibitor I inhibited brain 5'-nucleotidase while inhibitor II inhibited both the brain and liver enzymes. Inhibitor II on further purification on CM Sephadex C-25 yielded five fractions with inhibitor activity of which inhibitor IIC was electrophoretically homogeneous. It had a molecular weight of 8500 by SDS gel electrophoresis, was rich in basic amino acids and had a high proportion of beta structure. Interaction of the inhibitor with 5'-nucleotidase brought about modifications in the secondary structure of the inhibitor as seen from the circular dichroism spectrum.  相似文献   

12.
Double-headed protease inhibitors I, IIa, and IIc (AB I, AB IIa, and AB IIc) have been purified from azuki beans "Takara" (Vigna angularis) by conventional chromatographic methods and their amino acid sequences have been determined. AB I, AB IIa, and AB IIc had molecular weights of 9,166, 8,661, and 8,756 daltons, consisting of 82, 78, 79 amino acid residues, respectively. The molecular weights of these inhibitors, determined by gel filtration at pH 8.0, were 18,000 for AB I and 17,000 for both AB IIa and AB IIc, indicating that the inhibitors are dimers. The inhibitors had isoelectric points of 4.7 (AB I), 6.8 (AB IIa), and 6.2 (AB IIc). AB I stoichiometrically inhibited both trypsin and chymotrypsin at a molar ratio of 1 : 1. On the other hand, AB IIa and AB IIc both inhibited trypsin at a molar ratio of about 1 : 2 and also inhibited chymotrypsin, though only weakly. Sequence comparison with other double-headed inhibitors indicated the reactive sites of AB IIa and AB IIc for trypsin to be Lys26-Ser27 and Arg53-Ser54, and those of AB I for trypsin and chymotrypsin to be Lys26-Ser27 and Tyr53-Ser54, respectively. The differences between AB IIa and AB IIc were that AB IIa lacked the C-terminal aspartic acid residue, and that Glu10 and Arg60 in AB IIa were replaced by Gln10 and His60 in AB IIc. A comparison between AB IIa and AB I revealed 25 variant amino acids among the 78 residues of AB IIa; further, Ab IIa lacked 4 amino acid residues in the C-terminal region of AB I.  相似文献   

13.
Three proteinase inhibitors designated as I, II, and III were isolated from the excretory gland cells of the swine kidney worm, Stephanurus dentatus. The inhibitors, which were trichloroacetic acid-soluble, were purified by affinity chromatography and ion exchange chromatography. The homogeneity of each inhibitor was shown by polyacrylamide gel electrophoresis and electrofocusing. The molecular weights of the inhibitors estimated by sodium dodecyl sulfate gel electrophoresis fell within a limited range of 9300 to 9700, and the isoelectric points were 6.45, 6.20, and 5.34 for Inhibitors I, II, and III, respectively. The inhibitors formed complexes with trypsin having apparent dissociation constants (Ki) of 2.9 X 10(-11), 7.6 X 10(-11), and 6.4 X 10(-11) M, respectively. Each inhibitor inhibits the esterolytic and proteolytic activities of both trypsin and chymotrypsin. A proteinase inhibitor present in the reproductive organs, intestines, body walls, and esophagi was identical with Inhibitor II found in the excretory gland cells. Culture medium collected after 24-h incubation with adult worms contained the same three inhibitors as the excretory gland cells. These data suggest that the gland cells may secrete the inhibitors internally and externally.  相似文献   

14.
Proteinase Inhibitor I was induced to accumulate in tobacco (Nicotiana tabaccum) leaves by placing plants in darkness for 10 days at 27 degrees C. The inhibitor was isolated using ammonium sulfate precipitation, Sephadex G-75 chromatography, heating, and affinity chromatography with a chymotrypsin-Sepharose column. Inhibitor I was purified 232-fold with a yield of 34 mg from 2.5 kg of leaves. Affinity-purified tobacco Inhibitor I was shown to be homogeneous by gel electrophoresis in both nondissociating and dissociating buffers. The inhibitor has a molecular weight of 39,000 +/- 1000 determined by gel filtration and, like its potato and tomato counterparts, is composed of five subunits of molecular weight 8100. The tobacco Inhibitor I strongly inhibits chymotrypsin and weakly inhibits trypsin. The chemical, physical, and immunological properties of tobacco Inhibitor I indicate that it is structurally very similar to potato tuber Inhibitor I and tomato leaf Inhibitor I, although the synthesis and accumulation of the three inhibitors in their respective tissues are all under different developmental or environmental regulation.  相似文献   

15.
The specific inhibitor of calcium-dependent proteases was purified from soluble extracts of bovine heart. The protein had a molecular weight of 125,000 on sodium dodecyl sulfate polyacrylamide gels and migrated on gel filtration chromatography with an apparent molecular weight of 250,000. The inhibitor specifically blocked the action of the two calcium-dependent proteases, CDP-I and CDP-II, but did not influence a variety of other proteases including trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. These latter enzymes extensively degraded the inhibitor to discrete lower molecular weight peptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by gel filtration chromatography. Under the conditions studied, proteolysis of the inhibitor had little or no effect on its inhibitory activity; isolated peptides with molecular weights as low as 17,000 retained inhibitory function. A number of various-sized inhibitor fragments were isolated by gel filtration chromatography and by SDS-PAGE. These fragments were compared with the intact inhibitor for their ability to inhibit CDPs. As suggested previously by us and others, one molecule of intact inhibitor appears to inhibit up to five molecules of calcium-dependent protease. The inhibitor fragments of decreasing size inhibited correspondingly fewer molecules of protease. These results suggest that the inhibitor protein contains multiple functional domains and may explain some of the discrepancies in reported molecular weights for this protein.  相似文献   

16.
The trypsin inhibitors in buckwheat seeds were isolated by affinity chromatography on trypsin-Sepharose 4B, and the components were fractionated by chromatography on DEAE-Sepharose CL-6B. The major components, inhibitors I, II and III, were found to be homogeneous proteins with molecular weight of about 8,000. Trypsin inhibitory activity was more pronounced than the chymotrypsin inhibitory activity in all the inhibitor preparation obtained. The three major inhibitors had similar amino acid compositions and had no detectable amounts of tryptophan and carbohydrate. A high level of acidic and basic amino acid residues and a low level of methionine, tyrosine and phenylalanine residues characterized the inhibitors. Although the inhibitors I and II were particularly thermostable, inhibitor III, the most abundant component, was shown to be relatively heat-labile.  相似文献   

17.
Reactive sites of adzuki bean proteinase inhibitor II were determined by limited hydrolyses with catalytic amounts of trypsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1] at pH 3.0. Treatment of the trypsin-modified inhibitor with carboxypeptidase B [EC 3.4.12.3] released lysine from the inhibitor and led to complete loss of the activity for trypsin, virtually, without affecting the chymotrypsin-inhibitory activity. Limited hydrolysis with chymotrypsin resulted in a selective cleavage of a single tyrosyi peptide bond in the inhibitor, and treatment of this modified inhibitor with carboxypeptidase A [EC 3.4.12.2] abolished the chymotrypsininhibitory activity, having no effect on the trypsin-inhibitory activity. After reduction and S-carboxymethylation, the trypsin- and the chymotrypsin-modified inhibitors both could be separated into two components by gel-filtration on Sephadex G–50 and DEAE-cellulose chromatography. Amino acid and end group analyses of these components indicated that the reactive sites of inhibitor II are the Lys27-Ser28 bond against trypsin and the Tyr54-Ser55 against chymotrypsin.

Chemical modification of inhibitor II with cyanogen bromide had a fatal effect on the inhibitory activity against trypsin but no effect against chymotrypsin.  相似文献   

18.
G Pearce  S Johnson    C A Ryan 《Plant physiology》1993,102(2):639-644
Six small molecular mass, wound-inducible trypsin and chymotrypsin inhibitor proteins from tobacco (Nicotiana tabacum) leaves were isolated to homogeneity. The isoinhibitors, cumulatively called tobacco trypsin inhibitor (TTI), have molecular masses of approximately 5500 to 5800 D, calculated from gel filtration analysis and amino acid content. The amino acid sequence of the entire 53 residues of one isoinhibitor, TTI-1, and the sequence of 36 amino acid residues from the N terminus of a second isoinhibitor, TTI-5, were determined. The two isoinhibitors differ only at residue 11, which is threonine in TTI-1 and lysine in TTI-5. The isoinhibitors are members of the potato inhibitor II family and show considerable identity with the small molecular mass members of this family, which include the eggplant inhibitor, two small molecular mass trypsin and chymotrypsin inhibitors from potatoes, and an inhibitor from pistils of the ornamental plant Nicotiana alata. Antibodies produced against the isoinhibitors in rabbits were used in radial immunoassays to quantify both the systemic wound inducibility of TTI in tobacco leaves and its constitutive levels in flowers.  相似文献   

19.
He YY  Liu SB  Lee WH  Qian JQ  Zhang Y 《Peptides》2008,29(10):1692-1699
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.  相似文献   

20.
1. Two forms of phosphorylase kinase having mol. wt of 1,260,000 (form I) and 205,000 (form II) have been identified by gel filtration chromatography of rabbit liver crude extracts. 2. Form I was the majority when the homogenization buffer was supplemented with a mixture of proteinase inhibitors. This form has been purified through a protocol including ultracentrifugation, gel filtration and affinity chromatography on Sepharose-heparin. 3. Form II was purified by a combination of chromatographic procedures including ion exchange, gel filtration and affinity chromatography on Sepharose-Blue Dextran and Sepharose-histone. 4. Upon electrophoresis in the presence of sodium dodecyl sulfate two subunits of 69,000 and 44,000 were identified for this low molecular weight enzyme. Thus, a tetrameric structure comprising two subunits of each kind can be proposed. 5. Treatment of form I with either trypsin or chymotrypsin gave an active fragment having a molecular weight similar to that of form II. On the contrary, other dissociating treatments with salts, thiols and detergents failed in producing forms of lower molecular weight. 6. The similarities between proteolyzed forms I and II were stressed by their behavior in front of antibodies raised against the muscle isoenzyme of phosphorylase kinase. 7. The study of the effect of magnesium and fluoride ions on the activity of both forms showed an inhibitory effect of magnesium when its concentration exceeded that of ATP. 8. The inhibition could nevertheless be reverted by including 50 mM NaF in the reaction mixture. 9. Form I and form II could be distinguished by their pH dependence in the presence of an excess of magnesium ions over ATP, whereas the affinity for both substrates was not significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号