首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption of 14C-labelled amino acids (glycine, threonineand -aminoisobutyric acid) by the isolated sporophyte of Polytrichumformosum takes place mainly in the haustorium. The isolationof the sporophyte does not alter the absorption capacity ofits haustorium nor its ultrastructure, in particular that ofits peripheral transfer cells. amino acids, transfer cells, sporophyte, Polytrichum formosum, haustorium  相似文献   

2.
The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ.  相似文献   

3.
The transmembrane proton electrochemical potential gradient ΔμH+ in whole cells of Anacystis nidulans was measured in aerobic and anaerobic dark conditions using the distribution, between external medium and cell interior, of radioactively labeled weak acids (acetylsalicyclic acid, 5,5-dimethyloxazolidine-2,4-dione) or bases (imidazole, methylamine), and permeant ions (tetraphenylphosphonium cation, thiocyanate anion), as determined by flow dialysis. Alternatively, the movements across the plasma membrane of ΔpH-indicating atebrin or 9-aminoacridine, and of ΔΨ-indicating 8-anilino-l-naphthalenesulfonate were qualitatively followed by fluorescence measurements. Attempts were made to discriminate between the individual chemiosmotic gradients across the cytoplasmic (plasmalemma) and the intracytoplasmic (thylakoid) membranes. By use of the ionophores nigericin, monensin, and valinomycin, the components of the proton motive force, namely the proton concentration gradient ΔpH and the electric membrane potential ΔΨ were shown to be mutually exchangeable within the range of external pH values tested (3.2-11.0). Both components were depressed by the uncoupler carbonylcyanide m-chlorophenylhydrazone, though inhibition of ΔpH was much more pronounced than that of ΔΨ, notably in the alkaline pH0 range. The total proton electrochemical gradient across the plasma membrane was significantly higher in aerobic than in anaerobic cells and increased markedly (i.e. became more negative) towards lower pH0 values. This increase was paralleled by a similar increase in the rate of endogenous respiration of the cells. At the same time the ATPase inhibitor dicyclohexylcarbodiimide only slightly affected the proton motive force across the plasma membrane of aerobic cells. The results will be discussed in terms of a respiratorily competent plasma membrane in Anacystis nidulans.  相似文献   

4.
Osmotic shock severely reduces the ability of aged strips of Phaseolus vulgaris leaves to take up α-aminoisobutyric acid, an amino acid analogue which is known to be transported by a specific mechanism. Cold osmotic shock, i.e., transfer from 0.5 m sucrose at 25 C to H2O at 2 C, decreases α-aminoisobutyric acid uptake almost to zero. Substitution of 10−3m ethylenediaminetetraacetate for the sucrose, i.e., treatment which does not involve plasmolysis, produces a similar, but less severe, effect.  相似文献   

5.
Amino Acid transport in protoplasts isolated from soybean leaves   总被引:4,自引:3,他引:1  
We isolated large quantities of mesophyll protoplasts from source and sink leaves of soybean plants and examined them for amino acid uptake. Accumulation of amino acids in isolated protoplasts was linear for at least 40 minutes. Uptake kinetics revealed the presence of both saturable and linear components. Increasing external pH decreases the uptake. The uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone at 15 micromolar inhibited and fusicoccin at 10 micromolar stimulated amino acid uptake. Our data are consistent with a proton-cotransport mechanism for the uptake of l-glutamine and α-amino isobutyric acid into soybean mesophyll cells.  相似文献   

6.
A light-induced proton gradient (ΔpH) increase as exhibited by an increase of 9-aminoacridine fluorescence quenching is demonstrated between the external medium and the interior of the halophytic green alga Dunaliella salina. The formation and maintenance of the ΔpH is sensitive to electron transport inhibitors and to uncouplers. It is inhibited by p-chloromercuribenzenesulfonic acid (50% inhibition at 3 micromolar), which does not affect photosynthetic O2 evolution. It is concluded that the observed ΔpH is located across the plasmalemma or the chloroplast envelope. The formation and maintenance of the light-induced proton gradient requires the presence of Na+. Substitution of NaCl by KCl or glycerol results in inhibition of the ΔpH formation. The proton gradient is also sensitive to ATPase and energy transfer inhibitors. It is suggested that a Na+/H+ pump mechanism may be involved in the formation of the proton gradient in intact Dunaliella cells.  相似文献   

7.
(22S,23S)-Homobrassinolide was tested for its effect on the electric cell potential, proton extrusion, ferricyanide reduction, and amino acid and sucrose uptake of leaves of Egeria densa Planchon. In the light, (22S,23S)-homobrassinolide and its derivative, 2α-3α-dihydroxy-5α-stigmast-22-en-6-one, were similar to each other and similar to fusicoccin in causing hyperpolarization and proton extrusion, whereas stigmasterol was less effective. In darkness, the three sterols showed comparable effects. (22S,23S)-Homobrassinolide slightly stimulated ferricyanide reduction and promoted uptake of sucrose and α-aminoisobutyric acid. The results are compatible with a stimulation of an electrogenic proton pump mechanism at the plasmalemma by (22S,23S)-homobrassinolide.  相似文献   

8.
Solute concentration in the apoplast of growing sugarcane (Saccharum spp. hybrid) leaves was measured using one direct and several indirect methods. The osmotic potential of apoplast solution collected directly by centrifugation of noninfiltrated tissue segments ranged from −0.25 megapascal in mature tissue to −0.35 megapascal in tissue just outside the elongation zone. The presence of these solutes in the apoplast manifested itself as a tissue water potential equal to the apoplast osmotic potential. Since the tissue was not elongating, the measurements were not influenced by growth-induced water uptake and no significant tension was detected with the pressure chamber. Further evidence for a significant apoplast solute concentration was obtained from pressure exudation experiments and comparison of methods for estimating tissue apoplast water fraction. For elongating leaf tissue the centrifugation method could not be used to obtain direct measurements of apoplast solute concentration. However, several other observations suggested that the apoplast water potential of −0.35 to −0.45 megapascal in elongating tissue had a significant osmotic component and small, but significant tension component. Results of experiments in which exudate was collected from pressurized tissue segments of different ages suggested that a tissue age-dependent dynamic equilibrium existed between intra- and extracellular solutes.  相似文献   

9.
Microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings accumulate Ca2+ upon addition of MgATP. MgATP-dependent Ca2+ uptake co-migrates with the plasma membrane H+-ATPase on a sucrose gradient. Ca2+ uptake is insensitive to oligomycin, inhibited by vanadate (IC50 40 micromolar) and erythrosin B (IC50 0.2 micromolar) and displays a pH optimum between pH 6.6 and 6.9. MgATP-dependent Ca2+ uptake is insensitive to protonophores. These results indicate that Ca2+ transport in these microsomal vesicles is catalyzed by a Mg2+-dependent ATPase localized on the plasma membrane. Ca2+ strongly reduces ΔpH generation by the plasma membrane H+-ATPase and increases MgATP-dependent membrane potential difference (Δψ) generation. These effects of Ca2+ on ΔpH and Δψ generation are drastically reduced by micromolar erythrosin B, indicating that they are primarily a consequence of Ca2+ uptake into plasma membrane vesicles. The Ca2+-induced increase of Δψ is collapsed by permeant anions, which do not affect Ca2+-induced decrease of ΔpH generation by the plasma membrane H+-ATPase. The rate of decay of MgATP-dependent ΔpH, upon inhibition of the plasma membrane H+-ATPase, is accelerated by MgATP-dependent Ca2+ uptake, indicating that the decrease of ΔpH generation induced by Ca2+ reflects the efflux of H+ coupled to Ca2+ uptake into plasma membrane vesicles. It is therefore proposed that Ca2+ transport at the plasma membrane is mediated by a Mg2+-dependent ATPase which catalyzes a nH+/Ca2+ exchange.  相似文献   

10.
Mg:ATP-dependent H+ pumping has been studied in microsomal vesicles from 24-hour-old radish (Raphanus sativus L.) seedlings by monitoring both intravesicular acidification and the building up of an inside positive membrane potential difference (Δ ψ). ΔpH was measured as the decrease of absorbance of Acridine orange and Δ ψ as the shift of absorbance of bis(3-propyl-5-oxoisoxazol-4-yl)pentamethine oxonol. Both Mg:ATP-dependent Δ pH and Δ ψ generation are completely inhibited by vanadate and insensitive to oligomycin; moreover, Δ pH generation is not inhibited by NO3. These findings indicate that this membrane preparation is virtually devoid of mitochondrial and tonoplast H+-ATPases. Both intravesicular acidification and Δ ψ generation are influenced by anions: Δ pH increases and Δ ψ decreases following the sequence SO42−, Cl, Br, NO3. ATP-dependent H+ pumping strictly requires Mg2+. It is very specific for ATP (apparent Km 0.76 millimolar) compared to GTP, UTP, CTP, ITP. Δ pH generation is inhibited by CuSO4 and diethylstilbestrol as well as vanadate. Δ pH generation is specificially stimulated by K+ (+ 80%) and to a lesser extent by Na+ and choline (+28% and +14%, respectively). The characteristics of H+ pumping in these microsomal vesicles closely resemble those described for the plasma membrane ATPase partially purified from several plant materials.  相似文献   

11.
The components of the proton motive force (Δp), namely, membrane potential (Δψ) and transmembrane pH gradient (ΔpH), were determined in the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis. In these bacteria both Δψ and ΔpH were dependent on external pH. Thus at pH 8.0, Nitrosomonas europaea and Nitrobacter agilis had Δψ values of 173 mV and 125 mV (inside negative), respectively, as determined by the distribution of the lipophilic cation [3H]tetraphenyl phosphonium. Intracellular pH was determined by the distribution of two weak acids, 14C-benzoic and 14C-acetyl salicylic, and the weak base [14C]methylamine. Nitrosomonas europaea accumulated 14C-benzoic acid and 14C-acetyl salicylic acid when the external pH was below 7.0 and [14C]methylamine at alkaline pH. Similarly, Nitrobacter agilis accumulated the two weak acids below an external pH of about 7.5 and [14C]methylamine above this pH. As these bacteria grow best between pH 7.5 and 8.0, they do not appear to have a ΔpH (inside alkaline). Thus, above pH 7.0 for Nitrosomonas europaea and pH 7.5 for Nitrobacter agilis, Δψ only contributed to Δp. In Nitrosomonas europaea the total Δp remained almost constant (145 to 135 mV) when the external pH was varied from 6 to 8.5. In Nitrobacter agilis, Δp decreased from 178 mV (inside negative) at pH 6.0 to 95 mV at pH 8.5. Intracellular pH in Nitrosomonas europaea varied from 6.3 at an external pH of 6.0 to 7.8 at external pH 8.5. In Nitrobacter agilis, however, intracellular pH was relatively constant (7.3 to 7.8) over an external pH range of 6 to 8.5. In Nitrosomonas europaea, Δp and its components (Δψ and ΔpH) remained constant in cells at various stages of growth, so that the metabolic state of cells did not affect Δp. Such an experiment was not possible with Nitrobacter agilis because of low cell yields. The effects of protonophores and ATPase inhibitors on ΔpH and Δψ in the two nitrifying bacteria are considered.  相似文献   

12.
Several lines of evidence with intact tissues suggest amino acid transport is mediated by a proton-amino acid symport (L Rheinhold, A Kaplan 1984 Annu Rev Plant Physiol 35: 45-83). However, biochemical studies of proton-coupled amino acid transport in isolated membrane vesicles have not been reported. In the experiments presented here, amino acid transport was studied in membrane vesicles isolated from zucchini (Cucurbita pepo L. cv Black Beauty) hypocotyls. An imposed pH gradient (basic interior) was used to energize isolated membrane vesicles and drive amino acid transport. Proton-coupled amino acid accumulation was demonstrated for alanine, glutamate, glutamine, leucine, and tabtoxinine-β-lactam. Alanine transport into the isolated membrane vesicles was studied in detail. Alanine transport was protonophore sensitive and accumulation ratios exceeding 10 times that predicted by diffusion alone were observed. ΔpH-Dependent alanine transport exhibited saturation kinetics, suggesting translocation was mediated via a carrier transport system. In support of that conclusion, 50 micromolar N,N′-dicyclohexylcarbodiimide, a hydrophobic modifier of protein carboxyls, completely inhibited proton-coupled alanine accumulation. Transport activity, equilibrated on a linear sucrose gradient, peaked at 1.16 grams per cubic centimeter and co-migrated with a plasmalemma marker (vanadate-sensitive K+-Mg2+-ATPase). These results provide direct evidence in support of a proton-amino acid symport in the plasmalemma of higher plants.  相似文献   

13.
Miller DM 《Plant physiology》1985,77(1):162-167
The cut ends of excised Zea mays roots were sealed to a pressure transducer and their root pressures recorded. These rose approximately hyperbolically to a maximum value of 4.21 ± 0.34 bar after 30 to 40 minutes. Xylem exudate could not be collected at this pressure since the flow rate was zero. Samples of exudate were collected at lower applied pressures (ΔP), however, and Δπ, the osmotic pressure difference between them and the solution bathing the root, was measured by freezing point depression. A plot of ΔP/Δπ against Jv/Δπ, where Jv is the volume flux, proved to be a straight line whose intercept, equal to σ, the reflection coefficient, was 0.853 ± 0.016. The maximum xylem concentrations of various chemical species were found by a similar extrapolative method and compared with those in the cell sap. This indicated that (a) Ca2+, Mg2+, NO32−, SO42−, and most amino acids move from the cells to the xylem down an electrochemical potential gradient; (b) relative to these ions H+, NH4+, glutamine and asparagine are actively transported into the xylem; and (c) H2PO4, and K+ are actively retained in the symplasm.  相似文献   

14.
Proton motive force during growth of Streptococcus lactis cells   总被引:38,自引:20,他引:18       下载免费PDF全文
Experiments with the aerotolerant anaerobe Streptococcus lactis provide the opportunity for determining the proton motive force (Δp) in dividing cells. The two components of Δp, ΔΨ (the transmembrane potential) and ΔpH (the chemical gradient of H+), were determined by the accumulation of radiolabeled tetraphenylphosphonium (TPP+) and benzoate ions. The ΔΨ was calibrated with the K+ diffusion potential in starved, valinomycin-treated cells. With resting, glycolyzing cells, the Δp was measured also by the accumulation of the non-metabolizable sugar thiomethyl-β-galactoside (TMG). In resting cells the Δp, calculated either by adding ΔΨ and ZΔpH or from the levels of TMG, was relatively constant between pH 5 to 7, decreasing from 160 to 150 mV and decreasing further to 100 mV at pH 8.0. With the TPP+ probe for ΔΨ, we confirmed our previous finding that the K+ ions dissipate ΔΨ and increase ΔpH, whereas Na+ ions have little effect on ΔΨ and no effect on ΔpH. [3H]TPP+ and [14C]benzoate were added during exponential phase to S. lactis cells growing at pH 5 to 7 at 28°C in a defined medium with glucose as energy source. As with resting cells, the ΔpH and ΔΨ were dependent on the pH of the medium. At pH 5.1, the ΔpH was equivalent to 60 mV (alkaline inside) and decreased to 25 mV at pH 6.8. The ΔΨ increased from 83 mV (negative inside) at pH 5.1 to 108 mV at pH 6.8. The Δp, therefore, was fairly constant between pH 5 and 7, decreasing from 143 to 133 mV. The values for Δp in growing cells, just as in resting cells, are consistent with a system in which the net efflux of H+ ions is effected by a membrane-bound adenosine triphosphatase and glycolytically generated adenosine triphosphate. The data suggest that in both growing and resting cells the pH of the medium and its K+ concentration are the two principal factors that determine the relative contribution of ΔpH and ΔΨ to the proton motive force.  相似文献   

15.
The apoplast of developing soybean (Glycine max cv Hodgson) embryos and seed coats was analyzed for sucrose, amino acids, ureides, nitrate, and ammonia. The apoplast concentration of amino acids and nitrate peaked during the most rapid stage of seed filling and declined sharply as the seed attained its maximum dry weight. Amino acids and nitrate accounted for 80 to 95% of the total nitrogen, with allantoin and allantoic acid either absent or present in only very small amounts. Aspartate, asparagine, glutamate, glutamine, serine, alanine, and γ-aminobutyric acid were the major amino acids, accounting for over 70% of the total amino acids present. There was a nearly quantitative conversion of glutamine to glutamate between the seed coat and embryo, most likely resulting from the activity of glutamate synthase found to be present in the seed coat tissue. This processing of glutamine suggests a partly symplastic route for solutes moving from the site of phloem unloading in the seed coat to the embryo.  相似文献   

16.
Osmotic adjustment of cultured tobacco (Nicotiana tabacum L. var Wisconsin 38) cells was stimulated by 10 micromolar (±) abscisic acid (ABA) during adaptation to water deficit imposed by various solutes including NaCl, KCl, K2SO4, Na2SO4, sucrose, mannitol, or glucose. The maximum difference in cell osmotic potential (Ψπ) caused by ABA treatment during adaptation to 171 millimolar NaCl was about 6 to 7 bar. The cell Ψπ differences elicited by ABA were not due to growth inhibition since ABA stimulated growth of cells in the presence of 171 millimolar NaCl. ABA caused a cell Ψπ difference of about 1 to 2 bar in medium without added NaCl. Intracellular concentrations of Na+, K+, Cl, free amino acids, or organic acids could not account for the Ψπ differences induced by ABA in NaCl treated cells. However, since growth of NaCl treated cells is more rapid in the presence of ABA than in its absence, greater accumulation of Na+, K+, and Cl was necessary for ion pool maintenance. Higher intracellular sucrose and reducing sugar concentrations could account for the majority of the greater osmotic adjustment of ABA treated cells. More rapid accumulation of proline associated with ABA treatment was highly correlated with the effects of ABA on cell Ψπ. These and other data indicate that the role of ABA in accelerating salt adaptation is not mediated by simply stimulating osmotic adjustment.  相似文献   

17.
Li ZC  Bush DR 《Plant physiology》1990,94(1):268-277
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.  相似文献   

18.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

19.
Fibrobacter succinogenes S85, a cellulolytic ruminal bacterium, required sodium for growth and glucose uptake. Cells which were deenergized with iodoacetate (500 μM) could not take up [14C]glucose. However, deenergized cells which were treated with valinomycin, loaded with potassium, and diluted into sodium or sodium plus potassium to create an artificial electrical gradient (ΔΨ) plus a chemical gradient of sodium (ΔpNa) or ΔpNa alone transported glucose at a rapid rate. Cells which were loaded with potassium plus sodium and diluted into sodium (ΔΨ with sodium, but no ΔpNa) also took up glucose at a rapid rate. Potassium-loaded cells that were diluted into buffers which did not contain sodium (ΔΨ without sodium) could not take up glucose. An artificial ZΔpH which was created by acetate diffusion could not drive glucose transport even if sodium was present. The maximum rate and affinity of glucose transport (pH 6.7) were 62.5 nmol/mg of protein per min and 0.51 mM, respectively. S85 was unable to grow at a pH of less than 5.5, and there was little glucose transport at this pH. When the extracellular pH was decreased, the glucose carrier was inhibited, intracellular pH declined, the cells were no longer able to metabolize glucose, and ΔΨ declined. Monensin (1 μM) or lasalocid (5 μM) decreased intracellular ATP and dissipated both the ΔΨ and ΔpNa. Since there was no driving force for transport, glucose transport was inhibited. These results indicated that F. succinogenes used a pH-sensitive sodium symport mechanism to take up glucose and that either a ΔΨ or a ΔpNa was required for glucose transport.  相似文献   

20.
Total water potential (ψ), solute potential, and turgor potential of field-grown muskmelon (Cucumis melo L.) fruit tissue (pericarp) and seeds were determined by thermocouple psychrometry at 5-day intervals from 10 to 65 days after anthesis (DAA). Fruit maturity occurred between 44 and 49 DAA, and seed germination ability developed between 35 and 45 DAA. Pericarp ψ was essentially constant at approximately −0.75 megapascal (MPa) from 10 to 25 DAA, then decreased to a minimum value of −1.89 MPa at 50 DAA before increasing to −1.58 MPa at 65 DAA. Seed ψ remained relatively constant at approximately −0.5 MPa from 10 to 30 DAA then decreased to −2.26 MPa at 50 to 60 DAA before increasing to −2.01 MPa at 65 DAA. After a rapid increase to 20 DAA, seed fresh weight declined until 30 DAA due to net water loss, despite continuing dry weight gain. As fruit and seed growth rates decreased, turgor potential initially increased, then declined to small values when growth ceased. A disequilibrium in ψ was measured between seeds and pericarp both early and late in development. From 20 to 40 DAA, the ψ gradient was from the seed to the tissue, coinciding with water loss from the seeds. From 50 to 65 DAA, seed ψ decreased, causing a reversal of the ψ gradient and a slight increase in seed water content. The partitioning of solutes between symplast and apoplast may create and maintain ψ gradients between the pericarp and seed. The low solute potential within the pericarp due to solute accumulation and loss of cellular compartmentation during ripening and sensecence may be involved in prevention of precocious germination of mature seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号