首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two starfish oocytes with a 12 min time difference in the maturation phase were fused together with electric pulses to make a heteroplasmic conjugate. The starfish used were Asterina pectinifera. The emergence of the first meiotic spindle and the extrusion of the polar bodies in the conjugate were timed. Under polarization microscopy two meiotic spindles emerged with a time difference of 10-11 min, which is close to the time difference in the maturation phase between the original oocytes before fusion. In contrast, subsequent formation of the first two polar bodies occurred successively with a short time lag of 1-3 min between them. Times for the formation of both polar bodies were midway between the anticipated times for polar body formation in respective non-fused control oocytes. Thus, in one nucleus the meiotic division was delayed, while in another nucleus it was accelerated, in a single heteroplasmic conjugate. These two sets of observations indicate the presence of a certain control system that regulates progression of the cell cycle at a point during the period from the entry into metaphase through to late anaphase of meiosis I in starfish oocytes. This type of cell cycle control in starfish oocytes is obviously distinct from the currently accepted view of the cell cycle control by the spindle assembly checkpoint that monitors unattached kinetochores of mitotic chromosomes.  相似文献   

2.
A burst of protein phosphorylation and an appearance of maturation-promoting factor have been reported to occur shortly before germinal vesicle (nucleus) breakdown (GVBD) in 1-methyladenine-induced oocyte maturation of starfish. To detect if a protein kinase is activated before GVBD, protein kinase activity was compared in maturing oocytes which were just undergoing GVBD and immature oocytes of Asterina pectinifera. The oocytes were homogenized in a buffer modified from that used for extracting amphibian maturation-promoting factor. When the supernatant protein of homogenized immature oocytes was used as a substrate, protein kinase activity in the supernatant of the maturing oocytes was 7-fold higher than that of immature oocytes. The protein kinase in the supernatant of the maturing oocytes showed a high substrate specificity for histone H1 among the exogenous substrates examined, and the activity of the maturing oocytes for histone H1 was 6- to 7-fold higher than that of immature oocytes. The protein kinase detected in the maturing oocytes was very labile and was inhibited neither by ethylene glycol bis(β-aminoethyl ether)N, N, N′, N′-tetraacetic acid nor by the heat-stable inhibitor protein of cyclic AMP-dependent protein kinase. These results indicate that a calcium- and cyclic AMP-independent, labile “maturation-specific protein kinase” appeared before GVBD in maturing oocytes, and suggest its participation in the phosphorylation burst in vivo. The possible correlation of this kinase with maturation-promoting factor and chromosome condensation was discussed.  相似文献   

3.
It has been known in amphibians and starfishes that a cytoplasmic factor called maturation-promoting factor (MPF), produced in maturing oocytes under the influence of the maturation-inducing hormones, can induce germinal vesicle breakdown (GVBD) and the subsequent process of meiotic maturation. The present study revealed that injection of cytoplasm of maturing starfish oocytes (starfish MPF) into immature sea cucumber oocytes brought about maturation of the recipients. Amphibian MPF obtained from mature oocytes of Xenopus laevis or Bufo bufo was found to induce maturation of starfish oocytes following injection. Cytoplasm taken from cleaving starfish blastomeres induced maturation when injected into immature starfish oocytes. The maturation-inducing activity of cytoplasm of starfish blastomeres changed along with the mitotic cell cycle during 1- to 4-cell stages so far tested and reached a peak just before cleaving. Furthermore, an extract of mammalian cultured cells, CHO or V-79, synchronized in M phase, induced GVBD in starfish oocytes following injection, whereas S phase extract had little activity. These facts suggest that MPF generally brings about nuclear membrane breakdown in both meiosis and mitosis, and that the nature of MPF is very similar among vertebrates and invertebrates.  相似文献   

4.
5.
Enucleated oocytes of starfish still show cyclic changes in cortical tension with a temporal pattern similar to that exhibited by intact oocytes during meiotic division, provided that the enucleation is performed a certain time after the breakdown of the germinal vesicle (K. Yamamoto and M. Yoneda, Dev. Biol. 96, 166-172, 1983). If an oocyte is bisected immediately after germinal vesicle breakdown, the resulting nonnucleate fragment shows some change in tension, but the pattern of change is much less regular than that seen in intact oocytes, suggesting that the dispersion of germinal vesicle (GV) contents into cytoplasm is required for the establishment of the cytoplasmic cycle. In order to demonstrate the role of GV contents directly, nonnucleate fragments derived from immature oocytes were injected with GV contents taken from other immature oocytes. On treatment with 1-methyladenine (1-MA) these fragments showed two rounds of increase in tension as is characteristic of intact maturing oocytes. The first rise in tension was always observed 50-70 min after the treatment with 1-MA, similar to the time of first polar body formation in intact oocytes, regardless of the time of injection of GV contents. Even when GV contents were injected into nonnucleate fragments which had been already treated with 1-MA, these fragments showed two rounds of change in tension. The timing of the first rise in tension was found to be 38 +/- 7 min after injection, irrespective of the time of the foregoing treatment with 1-MA. These results prove the indispensability of GV contents for inducing the cytoplasm of the maturing starfish oocyte to initiate its own cyclic activity, and suggest that the normal process of cytoplasmic maturation may consist of two phases, i.e., (1) a GV-independent phase initiated by 1-MA treatment, and (2) a second phase initiated by mixing of GV contents with cytoplasm.  相似文献   

6.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

7.
The in vitro effects of 2-4-dinitrophenol (DNP) on spawning and follicular and oocyte maturation in starfish ovaries and its various cellular components were investigated. Spawning and oocyte and follicular maturation induced by starfish gonadotropin radial nerve factor (RNF) in isolated ovarian fragments were all inhibited by appropriate doses of DNP. DNP inhibits processes which occur shortly after addition of the gonadotropin; in ovarian fragments insensitivity to DNP inhibition occurred shortly after addition of RNF but prior to initiation of spawning. Spontaneous follicular and oocyte maturation which occurred following release of ovarian follicles into sea water was prevented by DNP. In non-spontaneously maturing follicles released from the ovary, DNP inhibited both follicle and oocyte maturation induced by the secondary stimulator of spawning and maturation, 1-methyladenine (1-MA). DNP also inhibited 1-MA induced meiotic maturation in isolated immature oocytes incubated in the absence of follicle cells. Inhibition of oocyte maturation was not associated with inhibition of 3H-1-MA incorporation by isolated oocytes. Immature oocytes incubated in the presence of DNP underwent maturation following washing and subsequent exposure to 1-MA. Immature oocytes initially exposed to both 1-MA and DNP, however, showed decreased maturation responsiveness following washing and re-exposure to 1-MA. The results suggest that the inhibitory effects of DNP on spawning and oocyte maturation are the result of direct effects on the oocytes and possibly other cells and tissues within the ovary.  相似文献   

8.
Cytoplasm of maturing starfish oocytes possesses a factor which induces maturation upon injection into immature oocytes. Such maturation-promoting factor (MPF) was extracted from maturing oocytes of Asterina pectinifera and characterized preliminarily. After 1-methyladenine (1-MeAde) treatment, maturing oocytes were packed in a centrifuge tube to remove jelly and excess medium, and then crushed by centrifugation. The turbid supernatant was homogenized with a buffer containing NaF, Na-beta-glycerophosphate, ATP, EGTA and leupeptin, followed by centrifugation. MPF extracted in the supernatant was purified partially by ammonium sulfate precipitation, hydrophobic chromatography on pentyl-agarose and gel filtration on Sephacryl S-300. The final material induced maturation in the recipient starfish oocytes when 0.5 ng of protein was injected in a volume of 400 pl. The maturation response included germinal vesicle breakdown, and formation of polar bodies and egg pronucleus. Such MPF preparation induced maturation in oocytes of Xenopus laevis as well. Further, starfish MPF was found to be a heat-labile protein; its molecular weight (MW) was estimated as 300 X 10(3) D by gel filtration and its sedimentation coefficient value as 5S by centrifugation on sucrose density gradients.  相似文献   

9.
The in vitro effects of 2-4-dinitrophenol (DNP) on spawning and follicular and oocyte maturation in starfish ovaries and its various cellular components were investigated. Spawning and oocyte and follicular maturation induced by starfish gonadotropin radial nerve factor (RNF) in isolated ovarian fragments were all inhibited by appropriate doses of DNP. DNP inhibits processes which occur shortly after addition of the gonadotropin; in ovarian fragments insensitivity to DNP inhibition occurred shortly after addition of RNF but prior to initiation of spawning. Spontaneous follicular and oocyte maturation which occurred following release of ovarian follicles into sea water was prevented by DNP. In non-spontaneously maturing follicles released from the ovary, DNP inhibited both follicle and oocyte maturation induced by the secondary stimulator of spawning and maturation, 1-methyladenine (1-MA). DNP also inhibited 1-MA induced meiotic maturation in isolated immature oocytes incubated in the absence of follicle cells. Inhibition of oocyte maturation was not associated with inhibition of 3H-1-MA incorporation by isolated oocytes. Immature oocytes incubated in the presence of DNP underwent maturation following washing and subsequent exposure to 1-MA. Immature oocytes initially exposed to both 1-MA and DNP, however, showed decreased maturation responsiveness following washing and re-exposure to 1-MA. The results suggest that the inhibitory effects of DNP on spawning and oocyte maturation are the result of direct effects on the oocytes and possibly other cells and tissues within the ovary.  相似文献   

10.
Development of calcium release mechanisms during starfish oocyte maturation   总被引:8,自引:1,他引:7  
In response to the maturation-inducing hormone 1-methyladenine, starfish oocytes acquire increased sensitivity to sperm and inositol trisphosphate (InsP3), stimuli that cause a release of calcium from intracellular stores and a rise in intracellular free calcium. In the immature oocyte, the calcium release in response to 10 sperm entries is less than that seen with a single sperm entry in the mature egg. Likewise, the sensitivity to injected InsP3 is less in the immature oocyte. Approximately 100 times as much InsP3 is required to obtain the same calcium release in an immature oocyte as in a mature egg. However, with saturating amounts of InsP3, immature oocytes and mature eggs release comparable amounts of calcium. These results indicate that although calcium stores are well-developed in the immature oocyte, mechanisms for releasing the calcium develop fully only during oocyte maturation.  相似文献   

11.
Ultrastructural changes in the maturing oocyte of the sea urchin Hemicentrotus pulcherrimus were observed, with special reference to the behavior of centrioles and chromosomes, using oocytes that had spontaneously started the maturation division process in vitro after dissection from ovaries. The proportion of oocytes entering the maturation process differed from batch to batch. In those eggs that accomplished the maturation division, it took ~4.5-5 h from the beginning of germinal vesicle breakdown to the formation of a second polar body. Serial sections revealed that a young oocyte before germinal vesicle breakdown had a pair of centrioles with procentrioles, located between the presumed animal pole and the germinal vesicle and accompanied by amorphous aggregates of moderately dense material and dense granules (granular aggregate). Just before germinal vesicle breakdown, a pair of fully grown centrioles located in the granular aggregate, which is present until this stage and then disappears, had already separated from another pair of centrioles. In meiosis I, each division pole had two centrioles, whereas in meiosis II each had only one. The two centrioles in the secondary oocyte separated into single units and formed the mitotic figure of meiosis II. The first polar body had two centrioles and the second had only one. The two centrioles in the first polar body did not form the mitotic figure nor did they separate at the time of meiosis II. These results indicate that, in sea urchins, duplication of the centrioles does not occur during the two successive meiotic divisions and the egg inherits only one centriole from the primary oocyte, confirming the results previously reported for starfish oocytes.  相似文献   

12.
Immature starfish oocytes are surrounded by envelopes consisting of follicular cells. These cells adhere to each other and to the oocyte, immobilizing the latter within the ovary. When isolated oocytes in their follicles are treated with 1-methyladenine (1-MeAde), germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) occur simultaneously. The 1-MeAde acts on the oocyte surface to produce a maturation-promoting factor (MPF) in the cytoplasm, which brings about GVBD. In the present study, MPF was found to induce FEBD as well as GVBD when injected into immature oocytes with their follicles in Asterina pectinifera. Although GVBD was induced by MPF in the presence of cytochalasin D, this drug prevented MPF-induced FEBD, and each follicular cell remained in situ on the surface of the oocyte. However, desmosomes connecting the processes of the follicle cell with the oocyte surface were disrupted following MPF injection even in the presence of cytochalasin D, and the processes became detached from the oocyte. FEBD occurred in these oocytes when cytochalasin D was removed, resulting in the formation of a small follicular clump by microfilament-mediated contraction of the follicle cells. These results show that FEBD is not brought about by the direct action of 1-MeAde but by the action of MPF. Therefore, in starfish, spawning as well as oocyte maturation is directly triggered by MPF produced under the influence of 1-MeAde.  相似文献   

13.
Porcine ovarian oocytes were fused with either homologous (porcine) or heterologous (rabbit) oocytes, both at different stages of maturation. The maturation-promoting factor (MPF) present in maturing porcine oocytes or ovulated rabbit oocytes induced rapid chromosome condensation of the oocytes with intact germinal vesicles (GVs). In the case of activation of ovulated rabbit oocyte, germinal vesicle breakdown (GVBD) of porcine oocytes was incomplete or did not occur. In the giant cells consisting of two immature porcine oocytes, meiotic maturation proceeded in the same manner as in unfused oocytes. However, in cells derived from fusion of immature porcine and rabbit oocytes, two metaphase groups of chromosomes were observed 6 h after fusion. It may be concluded that GVBD is governed after fusion by the cytoplasm originating from the oocytes of more advanced stages of maturation or from those which mature faster.  相似文献   

14.
We previously reported that immature starfish oocytes contain a novel 530-kDa proteasome-associating complex PC500 [previously named PC530; E. Tanaka, M. Takagi Sawada, C. Morinaga, H. Yokosawa, H. Sawada, Isolation and characterization of a novel 530-kDa protein complex (PC 530) capable of associating with the 20S proteasome from star fish oocytes, Arch. Biochem. Biophys. 374 (2000) 181-188]. In the present study, in order to obtain an insight into the biological function of this complex, we investigated the effects of anti-PC500 monoclonal antibodies on oocyte maturation of the starfish Asterina pectinifera. A monoclonal antibody 7C5 strongly inhibited germinal vesicle breakdown (GVBD) in a concentration-dependent manner. In contrast to the inhibitory effect of the 7C5 antibody on GVBD, no inhibition of egg cleavage was observed in a 7C5-antibody-microinjected single blastomere in a 2-cell stage embryo. These results indicate that PC500 plays a key role in starfish oocyte maturation in a meiosis-specific manner.  相似文献   

15.
In starfish, cytoplasm taken from maturing oocytes is capable of inducing breakdown of the germinal vesicle and subsequent maturation when injected into immature oocytes. The cytoplasmic factor has been designated as "maturation-promoting factor" (MPF). Ooplasm was stratified by centrifugation of maturing oocytes in density-graded Ficoll-seawater, without disrupting the cell. Three strata were distinguished beginning with the centripetal side: oil cap, hyaline layer and yellow layer. MPF activity was shown to be localized in the hyaline layer. Electron microscopic observation revealed that the hyaline layer contains Golgi complexes, many lucent vesicles and multi-vesicular bodies as distinct organelles, but seldom contains such inclusions as the lipid droplets forming the oil cap, mitochondria, yolk and pigment granules contained in the yellow layer. Based on these observations, a possible cytoplasmic component with MPF activity is discussed.  相似文献   

16.
Effect of tumor promoters including phorbol esters and teleocidin on 1-methyladenine (1-MeAde)-induced oocyte maturation was studied in the starfish. When isolated immature oocytes were treated with 1-MeAde and 12-O-tetradecanoylphorbol-13-acetate (TPA), 1-MeAde-induced maturation was completely inhibited at more than 2.5 μg/ml. However, if TPA was added after the hormone-dependent period (the minimum period wherein 1-MeAde is required), such maturation-inhibiting effect was no longer observed. Pretreatment with TPA for 5 min showed that its inhibitory action is irreversible. However, when TPA-injected oocytes were treated with 1-MeAde, all oocytes underwent germinal vesicle breakdown (GVBD). GVBD was induced in TPA-treated oocytes upon injection of the cytoplasm of maturing oocytes containing maturation-promoting factor (MPF). These facts show that TPA acts on the oocyte surface to inhibit the production of MPF. Retinoids including retinal, retinol and retinoic acid reversed the inhibitory effect of TPA on 1-MeAde-induced maturation. Experiments with various phorbol esters showed a good correlation between their maturation-inhibiting activity and their known tumor-promoting activity. Further, telecoidin, which is structurally unrelated to phorbol esters, inhibited 1-MeAde action. Since both tumor-promoting phorbol esters and teleocidin are known to activate Ca2+ -activated, phospholipid-dependent protein kinase (protein kinase C) and their activation effect is inhibited by retinoids, it appears that the activation of protein kinase C by tumor promoters is involved in blocking of 1-MeAde action.  相似文献   

17.
In starfish, oocytes are released from prophase block by a hormone, which has been identified as 1-methyladenine. The action of 1-methyladenine is indirect in inducing oocyte maturation: it acts on the oocyte surface to produce a cytoplasmic maturation-promoting factor (MPF), the direct trigger of germinal vesicle breakdown (GVBD). Less than 5 min after hormone addition, thus about 10 min before appearance of the cytoplasmic maturation-promoting factor, a factor appears in the germinal vesicle, which triggers the production of cytoplasmic MPF, GVBD, and the subsequent events of meiotic maturation when transferred in the cytoplasm of any fully grown oocyte of the starfishes Marthasterias glacialis and Asterias rubens. Before hormone action, the germinal vesicle also contains a factor capable of inducing meiosis reinitiation in recipient oocytes, but in contrast with nuclear MPF, this factor acts exclusively when transferred in the cytoplasm of a special category of oocytes (the “competent” oocytes). In contrast to other oocytes (the “incompetent” oocytes) the competent oocytes are capable of producing MPF to some extent after enucleation, upon hormonal stimulation. Transfer of either nuclear or cytoplasmic MPF initially produced in hormone-treated maturing oocytes triggers the production of both cytoplasmic and nuclear MPF in non-hormone-treated recipient oocytes of both categories.  相似文献   

18.
Immature oocytes of the starfish, Asterina pectinifera, are polyspermic. Spermatozoa can enter immature oocytes upon insemination, but the changes associated with the fertilization process in oocytes matured with 1-methyladenine (1-MeAde), such as the formation of aster and pronucleus, were not observed. After immature oocytes, previously inseminated, were matured with 1-MeAde, the formation of the sperm monaster was observed during germinal vesicle breakdown (GVBD). Amphiasters and pronuclei were formed after the formation of the second polar body. The acquisition by oocytes of the capacity to undergo the normal process of fertilization, therefore, occurs during the course of oocyte maturation. After injection of the cytoplasm of maturing oocytes into inseminated immature oocytes, the formation of aster and pronucleus was observed, suggesting that maturation-promoting factor (MPF) may be involved in establishing the cytoplasmic conditions (cytoplasmic maturity) necessary for the fertilization process to occur. In contrast, when enucleated, inseminated halves of immature oocytes were treated with 1-MeAde, only monasters were formed, while in the nucleated halves both amphiasters and sperm pronuclei were formed. Thus, germinal vesicle material is required for the formation of amphiaster and sperm pronucleus but not for the formation of monaster. It is possible that the amount of MPF produced in enucleated halves was sufficient only for the formation of the monaster but not for the formation of the amphiaster and pronucleus, since it has been previously established that germinal vesicle material is necessary for the amplification of MPF. The formation of the monaster in the enucleated halves at a time corresponding to GVBD in nucleated controls suggests that the amount of MPF needed for this event is rather small. For the induction of subsequent fertilization process, large amounts of MPF may be required to establish the necessary cytoplasmic conditions, although other possible role of nuclear material is not excluded.  相似文献   

19.
Fusion of mammalian oocytes: SEM observations of surface changes   总被引:1,自引:0,他引:1  
Mouse oocytes at the germinal vesicle (GV) stage were fused with maturing oocytes in which GVs were no longer visible. The fused cells were fixed at different time-intervals after the initiation of fusion and prepared for scanning electron microscope (SEM) observation. Concomitantly, some fused cells were prepared for light microscope evaluation. Our SEM observations showed no significant differences in surface morphology between immature and maturing oocytes. However, immediately after fusion was initiated, dramatic changes occurred on the surface of the maturing oocytes. The microvilli were shortened or disappeared locally and the plasma membrane was deeply ruffled. One hour after fusion, when the giant cells were nearly spherical, the microvilli reappeared and the ruffling gradually disappeared. In some areas, the microvilli were extremely long. Three hours after fusion, the fused cells were perfectly round and their surfaces were generally covered with microvilli of equal length. No further ruffling was observed. It is suggested that cytoplasmic mechanisms regulate the surface morphology of the oocytes during fusion.  相似文献   

20.
Polar body formation is an extremely unequal cell division. In order to understand the mechanism of polar body formation, morphological changes at the animal pole were investigated in living oocytes of the starfish, Asterina pectinifera, and the amounts of cortical actin filaments were quantitatively estimated after staining the maturing oocytes with fluorescently-labeled phallotoxins using a computer and image-processing software. Formation of a bulge, which is presumed to become a polar body, and the anaphase separation of chromosomes occurred simultaneously. When the bulge became large, one group of chromatids moved into the bulge. The dividing furrow then formed and finally a polar body formed. Just at the time of bulge formation, the intensity of the fluorescence produced by the actin filaments at the top of the animal pole began to decrease, and subsequently the intensity at the top fell to half of the original value. On the other hand, the fluorescence intensity at the base of the bulge increased gradually. This actin accumulation at the base created a dividing furrow around the top of the animal pole as the bulge grew. Even when the polar body formation was inhibited mechanically, a similar pattern of actin deficiency and accumulation in the cortex near the animal pole was observed. This indicates that such regulation of filamentous actin can take place without bulging. Therefore, polar body formation is initiated by the bulging of the cortex weakened by actin deficiency and followed by contraction of the base of the bulge reinforced by actin accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号