首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, various ethanol- and temperature-induced molecular dynamics simulations were conducted to investigate the conformational changes of several human lysozyme variants (I56T, D67H, and T70N) associated with hereditary systemic amyloidosis. The results show that these variants are all more sensitive to conditions affecting the structural integrity of this protein. The structural analyses of these variants reveal a high population of more unstable beta-domain and distorted hydrophobic core compared to the wild-type human lysozyme, particularly for the two natural amyloidogenic variants D67H and I56T. For the D67H variant, the distance between the mass centers of residues 54 and 67 was found to elongate as a result of the destruction of the hydrogen-bonding network stabilizing the two long loops in the beta-domain. It further accelerates the unfolding of this variant, starting from the hydrophobic core between the alpha- and beta-domains. For the I56T variant, the introduction of a hydrophilic residue in the hydrophobic core directly destroys the native contacts in the alpha-beta interface, leading to fast unfolding. The present results are consistent with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha-beta interface putatively results in the formation of the initial "seed" for amyloid fibrils.  相似文献   

2.
Definition of the transition mechanism from the native globular protein into fibrillar polymer was greatly improved by the biochemical and biophysical studies carried out on the two amyloidogenic variants of human lysozyme, I56T and D67H. Here we report thermodynamic and kinetic data on folding as well as structural features of a naturally occurring variant of human lysozyme, T70N, which is present in the British population at an allele frequency of 5% and, according to clinical and histopathological data, is not amyloidogenic. This variant is less stable than the wild-type protein by 3.7 kcal/mol, but more stable than the pathological, amyloidogenic variants. Unfolding kinetics in guanidine are six times faster than in the wild-type, but three and twenty times slower than in the amyloidogenic variants. Enzyme catalytic parameters, such as maximal velocity and affinity, are reduced in comparison to the wild-type. The solution structure, determined by 1H NMR and modeling calculations, exhibits a more compact arrangement at the interface between the beta-sheet domain and the subsequent loop on one side and part of the alpha domain on the other side, compared with the wild-type protein. This is the opposite of the conformational variation shown by the amyloidogenic variant D67H, but it accounts for the reduced stability and catalytic performance of T70N.  相似文献   

3.
T70N human lysozyme is the only known naturally occurring destabilised lysozyme variant that has not been detected in amyloid deposits in human patients. Its study and a comparison of its properties with those of the amyloidogenic variants of lysozyme is therefore important for understanding the determinants of amyloid disease. We report here the X-ray crystal structure and the solution dynamics of T70N lysozyme, as monitored by hydrogen/deuterium exchange and NMR relaxation experiments. The X-ray crystal structure shows that a substantial structural rearrangement results from the amino acid substitution, involving residues 45-51 and 68-75 in particular, and gives rise to a concomitant separation of these two loops of up to 6.5A. A marked decrease in the magnitudes of the generalised order parameter (S2) values of the amide nitrogen atom, for residues 70-74, shows that the T70N substitution increases the flexibility of the peptide backbone around the site of mutation. Hydrogen/deuterium exchange protection factors measured by NMR spectroscopy were calculated for the T70N variant and the wild-type protein. The protection factors for many of backbone amide groups in the beta-domain of the T70N variant are decreased relative to those in the wild-type protein, whereas those in the alpha-domain display wild-type-like values. In pulse-labelled hydrogen/deuterium exchange experiments monitored by mass spectrometry, transient but locally cooperative unfolding of the beta-domain of the T70N variant and the wild-type protein was observed, but at higher temperatures than for the amyloidogenic variants I56T and D67H. These findings reveal that such partial unfolding is an intrinsic property of the human lysozyme structure, and suggest that the readiness with which it occurs is a critical feature determining whether or not amyloid deposition occurs in vivo.  相似文献   

4.
Amyloid deposits are frequently formed by mutant proteins that have a lower stability than the wild-type proteins. Some reports, however, have shown that mutant-induced thermodynamic destabilization is not always a general mechanism of amyloid formation. To obtain a better understanding of the mechanism of amyloid fibril formation, we show in this study that equilibrium and kinetic refolding-unfolding reaction experiments with two amyloidogenic mutant human lysozymes (I56T and D67H) yield folding pathways that can be drawn as Gibbs energy diagrams. The equilibrium stabilities between the native and denatured states of both mutant proteins were decreased, but the degrees of instability were different. The Gibbs energy diagrams of the folding process reveal that the Gibbs energy change between the native and folding intermediate states was similar for both proteins, and also that the activation Gibbs energy change from the native state to the transition state decreased. Our results confirm that the tendency to favor the intermediate of denaturation facilitates amyloid formation by the mutant human lysozymes more than equilibrium destabilization between the native and completely denatured states does.  相似文献   

5.
We have previously expressed hexa-histidine-tagged human glutathione transferase GST T1-1 at very high levels in an Escherichia colilacZ mutagenicity assay strain. Ethylene dibromide (EDB), which is activated by GST T1-1, produces a potent response in the mutation assay. We have now constructed and expressed two SNP variants of wild-type GST T1-1:D141N and E173K. The EDB activation activities of both variant enzymes, as measured by the lacZ mutagenicity assay, are greatly reduced The D141N variant behaved similarly to the wild-type enzyme, in terms of expression level and specific activities for conjugation of glutathione with 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), ethylene diiodide (EDI), and 4-nitrobenzyl chloride (NBCl), and for peroxidative detoxication of cumene hydroperoxide (CuOOH). In contrast, variant E173K is poorly expressed, has no detectable activity with EPNP, NBCl, or CuOOH, and has EDI activity much lower than that of the wild-type enzyme. The circular dichroism (CD) thermal denaturation profiles of the wild-type protein and variant D141N show a sharp two-state transition between native and denatured states. Variant E173K showed a very different profile, consistent with improper or incomplete protein folding. Our results show that SNP variants can give rise to GSTT1-1 proteins with significantly altered properties.  相似文献   

6.
Isolation of BamHI variants with reduced cleavage activities   总被引:4,自引:0,他引:4  
Derivation of the bamhIR sequence (Brooks, J. E., Nathan, P.D., Landry, D., Sznyter, L.A., Waite-Rees, P., Ives, C. C., Mazzola, L. M., Slatko, B. E., and Benner, J. S. (1991) Nucleic Acids Res., in press), the gene coding for BamHI endonuclease, has facilitated construction of an Escherichia coli strain that overproduces BamHI endonuclease (W. E. Jack, L. Greenough, L. F. Dorner, S. Y. Xu, T. Strezelecka, A. K. Aggarwal, and I. Schildkraut, submitted for publication). As expected, low-level constitutive expression of the bamhIR gene in E. coli from the Ptac promotor construct is lethal to the host unless the bamHIM gene, which encodes the BamHI methylase, is also expressed within the cell. We identified four classes of BamHI endonuclease variants deficient in catalysis by selecting for survival of a host deficient for bamHIM gene, transformed with mutagenized copies of the bamhIR gene, and then screening the surviving cell extracts for DNA cleavage and binding activities. Class I variants (G56S, G91S/T153I, T114I, G130R, E135K, T153I, T157I, G194D) displayed 0.1-1% of the wild-type cleavage activity; class II variant (D94N) lacked cleavage activity but retained wild-type DNA binding specificity; class III variants (E77K, E113K) lacked cleavage activity but bound DNA more tightly; class IV variants (G56D, G90D, G91S, R122H, R155H) lacked both binding and cleavage activities. Variants with residual cleavage activities induced the E. coli SOS response and thus are presumed to cleave chromosomal DNA in vivo. We conclude that Glu77, Asp94, and Glu113 residues are essential for BamHI catalytic function.  相似文献   

7.
Klebsiella aerogenes urease uses a dinuclear nickel active site to catalyze urea hydrolysis at >10(14)-fold the spontaneous rate. To better define the enzyme mechanism, we examined the kinetics and structures for a suite of site-directed variants involving four residues at the active site: His320, His219, Asp221, and Arg336. Compared to wild-type urease, the H320A, H320N, and H320Q variants exhibit similar approximately 10(-)(5)-fold deficiencies in rates, modest K(m) changes, and disorders in the peptide flap covering their active sites. The pH profiles for these mutant enzymes are anomalous with optima near 6 and shoulders that extend to pH 9. H219A urease exhibits 10(3)-fold increased K(m) over that of native enzyme, whereas the increase is less marked ( approximately 10(2)-fold) in the H219N and H219Q variants that retain hydrogen bonding capability. Structures for these variants show clearly resolved active site water molecules covered by well-ordered peptide flaps. Whereas the D221N variant is only moderately affected compared to wild-type enzyme, D221A urease possesses low activity ( approximately 10(-)(3) that of native enzyme), a small increase in K(m), and a pH 5 optimum. The crystal structure for D221A urease is reminiscent of the His320 variants. The R336Q enzyme has a approximately 10(-)(4)-fold decreased catalytic rate with near-normal pH dependence and an unaffected K(m). Phenylglyoxal inactivates the R336Q variant at over half the rate observed for native enzyme, demonstrating that modification of non-active-site arginines can eliminate activity, perhaps by affecting the peptide flap. Our data favor a mechanism in which His219 helps to polarize the substrate carbonyl group, a metal-bound terminal hydroxide or bridging oxo-dianion attacks urea to form a tetrahedral intermediate, and protonation occurs via the general acid His320 with Asp221 and Arg336 orienting and influencing the acidity of this residue. Furthermore, we conclude that the simple bell-shaped pH dependence of k(cat) and k(cat)/K(m) for the native enzyme masks a more complex underlying pH dependence involving at least four pK(a)s.  相似文献   

8.
Site-directed mutagenesis of the draG gene was used to generate altered forms of dinitrogenase reductase-activating glycohydrolase (DRAG) with D123A, H142L, H158N, D243G, and E279R substitutions. The amino acid residues H142 and E279 are not required either for the coordination to the metal center or for catalysis since the variants H142L and E279R retained both catalytic and electron paramagnetic resonance spectral properties similar to those of the wild-type enzyme. Since DRAG-H158N and DRAG-D243G variants lost their ability to bind Mn(II) and to catalyze the hydrolysis of the substrate, H158 and D243 residues could be involved in the coordination of the binuclear Mn(II) center in DRAG.  相似文献   

9.
Tobacco etch virus protease (TEVp) is frequently applied in the cleavage of fusion protein. However, production of TEV protease in Escherichia coli is hampered by low yield and poor solubility, and auto-cleavage of wild type TEVp gives rise to the loss-of-function. Previously it was reported that TEVp S219V displayed more stability, and TEVp variant containing T17S/N68D/I77V and double mutant L56V/S135G resulted in the enhanced production and solubility, respectively. Here, we introduced T17S/N68D/I77V in TEVp S219V to generate TEVpM1 and combined five amino acid mutations (T17S/L56V/N68D/I77V/S135G) in TEVp S219V to create TEVpM2. Among TEVp S219V, and two constructed variants, TEVpM2 displayed highest solubility and catalytic activity in vivo, using EmGFP as the solubility reporter, and the designed fusion protein as in vivo substrate containing an N-terminal hexahistidine tagged GST, a peptide sequence for thrombin and TEV cut and E. coli diaminopropionate ammonia-lyase. The purified TEVp mutants fused with double hexahistidine-tag at N and C terminus showed highest yield, solubility and cleavage efficiency. Mutations of five amino acid residues in TEVpM2 slightly altered protein secondary structure conformed by circular dichroism assay.  相似文献   

10.
Nuclear magnetic resonance (NMR) studies of the c subunit of F1F0 ATP synthase from Escherichia coli are presented. A combination of homonuclear (1H-1H) and heteronuclear (1H-15N) 2D and 3D methods was applied to the 79-residue protein, dissolved in trifluoroethanol. Resonance assignment for all the backbone amide groups and many C alpha H side-chain protons was achieved. Analysis of inter- and intraresidue 1H-1H nuclear Overhauser effect (NOE) data and scalar coupling constant information indicates that this protein contains two extended regions of predominant alpha-helical character (residues 10-40 and 48-77) separated by an eight-residue segment which displays little evidence of ordered secondary structure. This model is consistent with information about the molecular motion of the protein deduced from 15N-1H heteronuclear NOE data and observed pKa values of carboxylic acid groups.  相似文献   

11.
12.
The enzyme IIIglc-like domain of Bacillus subtilis IIglc (IIIglc, 162 residues, 17.4 kDa) has been cloned and overexpressed in Escherichia coli. Sequence-specific assignment of the backbone 1H and 15N resonances has been carried out with a combination of homonuclear and heteronuclear two-dimensional and heteronuclear three-dimensional (3D) NMR spectroscopy. Amide proton solvent exchange rate constants have been determined from a series of 1H-15N heteronuclear single-quantum coherence (HSQC) spectra acquired following dissolution of the protein in D2O. Major structural features of IIIglc have been inferred from the pattern of short-, medium- and long-range NOEs in 3D heteronuclear 1H nuclear Overhauser effect 1H-15N multiple-quantum coherence (3D NOESY-HMQC) spectra, together with the exchange rate constants. IIIglc contains three antiparallel beta-sheets comprised of eight, three, and two beta-strands. In addition, five beta-bulges were identified. No evidence of regular helical structure was found. The N-terminal 15 residues of the protein appear disordered, which is consistent with their being part of the Q-linker that connects the C-terminal enzyme IIIglc-like domain to the membrane-bound IIglc domain. Significantly, two histidine residues, His 68 and His 83, which are important for phosphotransferase function, are found from NOE measurements to be in close proximity at the ends of adjacent strands in the major beta-sheet.  相似文献   

13.
We have created a Drosophila model of lysozyme amyloidosis to investigate the in vivo behavior of disease-associated variants. To achieve this objective, wild-type (WT) protein and the amyloidogenic variants F57I and D67H were expressed in Drosophila melanogaster using the UAS-gal4 system and both the ubiquitous and retinal expression drivers Act5C-gal4 and gmr-gal4. The nontransgenic w(1118) Drosophila line was used as a control throughout. We utilized ELISA experiments to probe lysozyme protein levels, scanning electron microscopy for eye phenotype classification, and immunohistochemistry to detect the unfolded protein response (UPR) activation. We observed that expressing the destabilized F57I and D67H lysozymes triggers UPR activation, resulting in degradation of these variants, whereas the WT lysozyme is secreted into the fly hemolymph. Indeed, the level of WT was up to 17 times more abundant than the variant proteins. In addition, the F57I variant gave rise to a significant disruption of the eye development, and this correlated to pronounced UPR activation. These results support the concept that the onset of familial amyloid disease is linked to an inability of the UPR to degrade completely the amyloidogenic lysozymes prior to secretion, resulting in secretion of these destabilized variants, thereby leading to deposition and associated organ damage.  相似文献   

14.
We recorded several types of heteronuclear three-dimensional (3D) NMR spectra on 15N-enriched and 13C/15N-enriched histidine-containing phosphocarrier protein, HPr, to extend the backbone assignments [van Nuland, N. A. J., van Dijk, A. A., Dijkstra, K., van Hoesel, F. H. J., Scheek, R. M. & Robillard, G. T. (1992) Eur. J. Biochem, 203, 483-491] to the side-chain 1H,15N and 13C resonances. From both 3D heteronuclear 1H-NOE 1H-13C and 1H-NOE 1H-15N multiple-quantum coherence (3D-NOESY-HMQC) and two-dimensional (2D) homonuclear NOE spectra, more than 1200 NOE were identified and used in a step-wise structure refinement process using distance geometry and restrained molecular dynamics involving a number of new features. A cluster of nine structures, each satisfying the set of NOE restraints, resulted from this procedure. The average root-mean-square positional difference for the C alpha atoms is less than 0.12 nm. The secondary structure topology of the molecule is that of an open-face beta sandwich formed by four antiparallel beta strands packed against three alpha helices, resembling the recently published structure of Bacillus subtilis HPr, determined by X-ray crystallography [Herzberg, O., Reddy, P., Sutrina, S., Saier, M. H., Reizer, J. & Kapafia, G. (1992) Proc. Natl, Acad. Sci. USA 89, 2499-2503).  相似文献   

15.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

16.
17.
The reactivity, stability and unfolding of wild-type (WT) Fusarium solani pisi cutinase and L153Q, S54D and T179C variants were studied in the absence and presence of the dioctyl sulfosuccinate sodium salt (AOT) surfactant. In the absence of surfactant the S54D variant catalytic activity is similar to that of the WT cutinase, whereas L153Q and T179C variants show a lower activity. AOT addition induces an activity reduction for WT cutinase and its variants, although for low AOT concentrations a small increase of activity was observed for S54D and T179C. The enzyme deactivation in the presence of 0.5 mM AOT is relatively slow for the S54D and T179C variants when compared to wild-type cutinase and L153Q variant. These results were correlated with secondary and tertiary structure changes assessed by the CD spectrum and fluorescence of the single tryptophan and the six tyrosine residues. The WT cutinase and S54D variant have similar secondary and tertiary structures that differ from those of T179C and L153Q variants. L153Q, S54D and T179C mutations prevent the formation of hydrophobic crevices responsible for the unfolding by anionic surfactants, with the consequent decrease of the AOT-cutinase interactions.  相似文献   

18.
One of the 20 or so human amyloid diseases is associated with the deposition in vital organs of full-length mutational variants of the antibacterial protein lysozyme. Here, we report experimental data that permit a detailed comparison to be made of the behaviour of two of these amyloidogenic variants, I56T and D67H, under identical conditions. Hydrogen/deuterium exchange experiments monitored by NMR and mass spectrometry reveal that, despite their different locations and the different effects of the two mutations on the structure of the native state of lysozyme, both mutations cause a cooperative destabilisation of a remarkably similar segment of the structure, comprising in both cases the beta-domain and the adjacent C-helix. As a result, both variant proteins populate transiently a closely similar, partially unstructured intermediate in which the beta-domain and the adjacent C-helix are substantially and simultaneously unfolded, whereas the three remaining alpha-helices that form the core of the alpha-domain still have their native-like structure. We show, in addition, that the binding of a camel antibody fragment, cAb-HuL6, which was raised against wild-type lysozyme, restores to both variant proteins the stability and cooperativity characteristic of the wild-type protein; as a consequence, it inhibits the formation of amyloid fibrils by both variants. These results indicate that the reduction in global cooperativity, and the associated ability to populate transiently a specific, partly unfolded intermediate state under physiologically relevant conditions, is a common feature underlying the behaviour of these two pathogenic mutations. The formation of intermolecular interactions between lysozyme molecules that are in this partially unfolded state is therefore likely to be the fundamental trigger of the aggregation process that ultimately leads to the formation and deposition in tissue of amyloid fibrils.  相似文献   

19.
The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1 beta (153 residues, Mr = 17,400) has been obtained by using primarily 15N-1H heteronuclear three-dimensional (3D) NMR techniques in combination with 15N-1H heteronuclear and 1H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. We show that the problems of amide NH and C alpha H chemical shift degeneracy that are prevalent for proteins of this size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1 beta. The complete list of 15N and 1H assignments is given for all the amide NH and C alpha H resonances of all non-proline residues, as well as the 1H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1 beta.  相似文献   

20.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号