首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Ribosomal RNA sequences and cladistic analysis were used to infer a phylogeny for eight bryophyte taxa. Portions of the cytoplasmic large (26S-like) and small (18S-like) subunit ribosomal RNA genes were sequenced for three marchantioid liverworts (Asterella, Conocephalum, and Riccia), three mosses (Atrichum, Fissidens, and Plagiomnium), and two hornworts (Phaeoceros and Notothylas). Cladistic analysis of these data suggests that the hornworts are the sister group to the mosses, the mosses and hornworts form a clade that is sister to the tracheophytes, and the liverworts form a clade sister to the other land plants. These results differ from previous cladistic analyses based on morphology, ultrastructure, and biochemistry, wherein the mosses alone are sister group to the tracheophytes. We conclude that cladistic analysis of molecular data can provide an independent data set for the study of bryophyte phylogeny, but the differences between the molecular and morphological results are a topic for further investigation.  相似文献   

2.
Abstract— Separate cladistic analyses of the green algae, liverworts, and hornworts are presented. Classificatory and evolutionary implications of these analyses, in addition to our previously published cladistic analyses of mosses and the embryophytes as a whole, are discussed. The embryophytes are monophyletic, and are part of a larger monophyletic group that includes some of the green algae (the "charophytes"). Important evolutionary transformations in the early phylogeny of the land plants include: (1) retention of the zygote on the haploid plant (gametophyte), with the sporophyte generation arising de novo by delaying meiosis, (2) independent elaboration of an elongate sporophyte in some liverworts, some hornworts, and in the moss-tracheophyte clade, (3) independent origin of radial (axial) symmetry in the gametophyte in some liverworts and in the moss-tracheophyte clade, (4) independent origin of leaves on the gametophyte in some liverworts and in mosses, and (5) the unique development of a branching sporophyte with multiple sporangia in the tracheophytes.  相似文献   

3.
The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result.  相似文献   

4.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

5.
The problem of relationships among the major basal living groups of land plants is long standing, yet the uncertainty as to the phylogenetic affinity of these lines persists in the literature. Molecular and modern cladistic studies of the phylogenetic relationships of the above groups resulted in a large number of conflicting topologies. However, with the exception of the cladistic analyses of spermatogenesis, suggesting monophyly of extant bryophytes, these studies agree the paraphyletic bryophyte grade is basal within the embryophyte tree. Here we would like to present analyses on the basis of the concatenated datasets of nucleotide and amino-acid sequences of 57 protein-coding genes common to 17 chloroplast genomes of land plants and a charophyte alga Chaetosphaeridium globosum. Character-wise, these are the largest datasets currently available to address the problem of basal relationships within embryophytes. Main lineages of bryophytes, i.e liverworts, hornworts and mosses are represented in our alignments with a single taxon, whereas 14 taxa represent the tracheophytes. With our data, phylogeny with liverwort basal appears to be and artifact related to high and unequal A+T contents among the sequences analysed. Reducing this compositional bias and applying methods developed to counter it, we recovered an alternative, strongly supported topology wherein both bryophytes and tracheophytes are monophyletic. Within bryophytes, hornworts are basal and liverworts are sister to mosses.  相似文献   

6.
7.
基部藓类是稳定地处于藓类系统发育树基部的类群.它包括7纲,2亚纲,10目,10科,34属,637种.基部藓类虽然只占藓类种类的5%,但由于其内部各类群孢子体形态极为丰富,因此对于理解整个藓类植物的系统发育具有重要意义.通过对48个种(36个藓类、4个维管植物、2个角苔、4个苔类和2个藻类)的9个DNA片段(NU:26S,18S; MT:nad5,cox1; CP:rbcL,rps4,cp-LSU,cp-SSU,atpB)进行分子系统学分析,综合最大似然法(maximum likelihood)、最大简约法(most parsimony)和贝叶斯分析(Bayesian inference)方法的建树结果,理清了前人研究中存在冲突的类群之间的关系并为已确定的关系提供了更高的支持率.研究结果如下:(1)藻苔纲和泥炭藓纲互为姐妹类群,处于整个藓类的最基部;(2)黑藓纲与黑真藓纲互为姐妹类群(3)长台藓纲和具齿藓类组成单系;(4)四齿藓纲是所有具齿藓类的基部类群;(5)烟杆藓亚纲处于真藓纲的最基部,其次是短颈藓亚纲.以上结论在分子系统树上得到了很高的支持率.  相似文献   

8.
The bryophytes comprise three phyla of embryophytes that are well established to occupy the first nodes among extant lineages in the land-plant tree of life. The three bryophyte groups (hornworts, liverworts, mosses) may not form a monophyletic clade, but they share life history features including dominant free-living gametophytes and matrotrophic monosporangiate sporophytes. Because of their unique vegetative and reproductive innovations and their critical position in embryophyte phylogeny, studies of bryophytes are crucial to understanding the evolution of land plant morphology and genomes. This review focuses on phylogenetic relationships within each of the three divisions of bryophytes and relates morphological diversity to new insights about those relationships. Most previous work has been on the mosses, but progress on understanding the phylogeny of hornworts and liverworts is advancing at a rapid pace. Multilocus multigenome studies have been successful at resolving deep relationships within the mosses and liverworts, whereas single-gene analyses have advanced understanding of hornwort evolution.  相似文献   

9.
10.
Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes.  相似文献   

11.
Ultrastructure, biochemistry and 5S rRNA sequences link tracheophytes, bryophytes and charalean green algae, but the precise interrelationships between these groups remain unclear. Further major clarification now awaits primary sequence data. These are also needed to determine directionality in possible evolutionary trends within the bryophytes, but are unlikely to overturn current schemes of classification or phylogeny. Comparative ultrastructural studies of spermatogenesis, sporogenesis, the cytoskeleton and plastids reinforce biochemical and morphogenetic evidence for the wide phyletic discontinuities between mosses, hepatics and hornworts, and also rule out direct lines of descent between them. Direct ancestral lineages from charalean algae to bryophytes and to tracheophytes are also unlikely. EM studies of gametophyte/sporophyte junctions, plus immunological investigations of bryophyte cytoskeletons, are likely to accentuate the differences between mosses, hepatirs and hornworts. Other priorities for systematics include elucidation of oil body ultrastructure, analysis of the changes in nuclear proteins during spermatogenesis and a detailed comparison of bryophyte and charalean plastids. The combined evidence from ultrastrueture, biochemistry, morphology and morphogenesis warrants general acceptance of the polyphyletic origin of the bryophytes. Ultrastructural attributes should be more widely used in bryophyte systematics.  相似文献   

12.
Xylans are known to be major cellulose-linking polysaccharides in secondary cell walls in higher plants. We used two monoclonal antibodies (LM10 and LM11) for a comparative immunocytochemical analysis of tissue and cell distribution of xylans in a number of taxa representative of all major tracheophyte and bryophyte lineages. The results show that xylans containing the epitopes recognized by LM10 and LM11 are ubiquitous components of secondary cell walls in vascular and mechanical tissues in all present-living tracheophytes. In contrast, among the three bryophyte lineages, LM11 binding was detected in specific cell-wall layers in pseudoelaters and spores in the sporophyte of hornworts, while no binding was observed with either antibody in the gametophyte or sporophyte of liverworts and mosses. The ubiquitous occurrence of xylans containing LM10 and LM11 epitopes in tracheophytes suggests that the appearance of these polysaccharides has been a pivotal event for the evolution of highly efficient vascular and mechanical tissues. LM11 binding in the sporophyte of hornworts, indicating the presence of relatively highly substituted xylans (possibly arabinoxylans), separates these from the other bryophytes and is consistent with recent molecular data indicating a sister relationship of the hornworts with tracheophytes.  相似文献   

13.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

14.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

15.
RNA editing affects messenger RNAs and transfer RNAs in plant mitochondria by site-specific exchange of cytidine and uridine bases in both seed and nonseed plants. Distribution of the phenomenon among bryophytes has been unclear since RNA editing has been detected in some but not all liverworts and mosses. A more detailed understanding of RNA editing in plants required extended data sets for taxa and sequences investigated. Toward this aim an internal region of the mitochondrial nad5 gene (1104 nt) was analyzed in a large collection of bryophytes and green algae (Charales). The genomic nad5 sequences predict editing in 30 mosses, 2 hornworts, and 7 simple thalloid and leafy liverworts (Jungermanniidae). No editing is, however, required in seven species of the complex thalloid liverworts (Marchantiidae) and the algae. RNA editing among the Jungermanniidae, on the other hand, reaches frequencies of up to 6% of codons being modified. Predictability of RNA editing from the genomic sequences was confirmed by cDNA analysis in the mosses Schistostega pennata and Rhodobryum roseum, the hornworts Anthoceros husnotii and A. punctatus, and the liverworts Metzgeria conjugata and Moerckia flotoviana. All C-to-U nucleotide exchanges predicted to reestablish conserved codons were confirmed. Editing in the hornworts includes the removal of genomic stop codons by frequent reverse U-to-C edits. Expectedly, no RNA editing events were identified by cDNA analysis in the marchantiid liverworts Ricciocarpos natans, Corsinia coriandra, and Lunularia cruciata. The findings are discussed in relation to models on the phylogeny of land plants. Received: 2 April 1998 / Accepted: 4 August 1998  相似文献   

16.
The slow-evolving mitochondrial DNAs of plants have potentially conserved information on the phylogenetic branching of the earliest land plants. We present the nad2 gene structures in hornworts and liverworts and in the presumptive earliest-branching vascular land plant clade, the Lycopodiopsida. Taken together with the recently obtained nad2 data for mosses, each class of bryophytes presents another pattern of angiosperm-type introns conserved in nad2: intron nad2i1 in mosses; intron nad2i3 in liverworts; and both introns, nad2i3 and nad2i4, in hornworts. The lycopods Isoetes and Lycopodium show diverging intron conservation and feature a unique novel intron, termed nad2i3b. Hence, mitochondrial introns in general are positionally stable in the bryophytes and provide significant intraclade phylogenetic information, but the nad2 introns, in particular, cannot resolve the interclade relationships of the bryophyte classes and to the tracheophytes. The necessity for RNA editing to reconstitute conserved codon entities in nad2 is obvious for all clades except the marchantiid liverworts. Finally, we find that particularly small group II introns appear as a general feature of the Isoetes chondriome. Plant mitochondrial peculiarities such as RNA editing frequency, U-to-C type of RNA editing, and small group II introns appear to be genus-specific rather than gene-specific features.  相似文献   

17.
As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophvtes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http: //www.science.siu.edu/ landplants/index.html.  相似文献   

18.
Chloroplast phylogeny indicates that bryophytes are monophyletic   总被引:3,自引:0,他引:3  
Opinions on the basal relationship of land plants vary considerably and no phylogenetic tree with significant statistical support has been obtained. Here, we report phylogenetic analyses using 51 genes from the entire chloroplast genome sequences of 20 representative green plant species. The analyses, using translated amino acid sequences, indicated that extant bryophytes (mosses, liverworts, and hornworts) form a monophyletic group with high statistical confidence and that extant bryophytes are likely sisters to extant vascular plants, although the support for monophyletic vascular plants was not strong. Analyses at the nucleotide level could not resolve the basal relationship with statistical confidence. Bryophyte monophyly inferred using amino acid sequences has a good statistical foundation and is not rejected statistically by other data sets. We propose bryophyte monophyly as the currently best hypothesis.  相似文献   

19.
Lignins are complex phenolic heteropolymers present in xylem and sclerenchyma cell walls in tracheophytes. The occurrence of lignin-like polymers in bryophytes is controversial. In this study two polyclonal antibodies against homoguaiacyl (G) and guaiacyl/syringyl (GS) synthetic lignin-like polymers that selectively labelled lignified cell walls in tracheophytes also bound to cell walls in bryophytes, the GS antibody usually giving a stronger labelling than the G antibody. In contrast to tracheophytes, the antibody binding in liverworts and mosses was not tissue-specific. In the hornworts Megaceros flagellaris and M. fuegiensis the pseudoelaters and spores were labelled more intensely than the other cell types with the GS antibody. The cell walls in Nitella were labelled with both antibodies but no binding was observed in Coleochaete. The results suggest that the ability to incorporate G or GS moieties in cell walls is a plesiomorphy (primitive character) of the land plant clade.  相似文献   

20.
Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号