首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes are the primary site of freezing injury during cryopreservation or vitrification of cells. Addition of cryoprotective agents (CPAs) can reduce freezing damage, but can also disturb membrane integrity causing leakage of intracellular constituents. The aim of this study was to investigate lipid-CPA interactions in a liposome model system to obtain insights in mechanisms of cellular protection and toxicity during cryopreservation or vitrification processing. Various CPAs were studied including dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), dimethyl formamide (DMF), and propylene glycol (PG). Protection against leakage of phosphatidylcholine liposomes encapsulated with carboxyfluorescein (CF) was studied upon CPA addition as well as after freezing-and-thawing. Molecular interactions between CPAs and phospholipid acyl chains and headgroups as well as membrane phase behavior were studied using Fourier transform infrared spectroscopy. A clear difference was observed between the effects of DMSO on PC-liposomes compared to the other CPAs tested, both for measurements on CF-retention and membrane phase behavior. All CPAs were found to inhibit membrane leakiness during freezing. However, exposure to high CPA concentrations already caused leakage before freezing, increasing in the order DMSO, EG, DMF/PG, and GLY. With DMSO, liposomes were able to withstand up to 6 M concentrations compared to only 1 M for GLY. Cholesterol addition to PC-liposomes increased membrane stability towards leakiness. DMSO was found to dehydrate the phospholipid headgroups while raising the membrane phase transition temperature, whereas the other CPAs caused an increase in the hydration level of the lipid headgroups while decreasing the membrane phase transition temperature.  相似文献   

2.
Previous studies have shown that certain saturated lipids protect red blood cells (RBCs) during hypothermic storage but provide little protection during freezing or freeze-drying, whereas various unsaturated lipids destabilize RBCs during hypothermic storage but protect during freezing and freeze-drying. The protective effect of liposomes has been attributed to membrane modifications. We have previously shown that cholesterol exchange and lipid transfer between liposomes composed of saturated lipids and RBCs critically depends on the length of the lipid acyl chains. In this study the effect of unsaturated lipids with differences in their number of unsaturated bonds (18:0/18:1, 18:1/18:1, 18:2/18:2) on RBC membrane properties has been studied. RBCs were incubated in the presence of liposomes and both the liposomal and RBC fraction were analyzed by Fourier transform infrared spectroscopy (FTIR) after incubation. The liposomes caused an increase in RBC membrane conformational disorder at suprazero temperatures. The fluidizing effect of the liposomes on the RBC membranes, however, was found to be similar for the different lipids irrespective of their unsaturation level. The gel to liquid crystalline phase transition temperature of the liposomes increased after incubation with RBCs. RBC membrane fluidity increased linearly during the first 8 hours of incubation in the presence of liposomes. The increase in RBC membrane fluidity was found to be temperature dependent and displayed Arrhenius behaviour between 20 and 40°C, with an activation energy of 88 kJ mol?1. Taken together, liposomes composed of unsaturated lipids increase RBC membrane conformational disorder, which could explain their cryoprotective action.  相似文献   

3.
Abstract

Research has suggested that exposure to sub-micellar concentrations of bile salts (BS) increases the permeability of lipid bilayers in a time-dependent manner. In this study, incubation of soy phosphatidylcholine small unilamellar vesicles (liposomes) with sub-micellar concentrations of cholate (C), deoxycholate (DC), 12-monoketocholate (MKC) or taurocholate (TC) in pH 7.2 buffer increased membrane fluidity and negative zeta potential in the order of increasing BS liposome-pH 7.2 buffer distribution coefficients (MKC?<?C?≈?TC?<?DC). In liposomes labeled with the dithionite-sensitive fluorescent lipid N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine (NBD-PE) in both leaflets and equilibrated with sub-micellar concentrations of BS, fluorescence decline during continuous exposure to dithionite was biphasic involving a rapid initial phase followed by a slower second phase. Membrane permeability to dithionite as measured by the rate of the second phase increased in the order control?<?MKC?<?TC?~?C?<?DC. In liposomes labeled with NBD-PE in the inner leaflet only and incubated with the same concentrations of C, DC and MKC, membrane permeability to dithionite initially increased very rapidly in the order MKC?<?C?<?DC before impermeability to dithionite was restored after which fluorescence decline was consistent with NBD-PE flip-flop. For liposomes incubated with TC, membrane permeability to dithionite was only slightly increased and the decline in fluorescence was mainly the result of NBD-PE flip-flop. These results provide evidence that BS interact with lipid bilayers in a time-dependent manner that is different for conjugated and unconjugated BS. MKC appears to cause least disturbance to liposomal membranes but, when the actual MKC concentration in liposomes is taken into account, MKC is actually the most disruptive.  相似文献   

4.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

5.
Antibiotics acting on bacterial membranes are receiving increasing attention because of widespread resistance to agents acting on other targets and of potentially improved bactericidal effects. Oritavancin is a amphiphilic derivative of vancomycin showing fast and extensive killing activities against multi-resistant (including vancomycin insusceptible) Gram-positive organisms with no marked toxicity towards eukaryotic cells. We have undertaken to characterize the interactions of oritavancin with phospholipid bilayers, using liposomes (LUV) and supported bilayers made of cardiolipin (CL) or phosphatidylglycerol (POPG) and phosphatidylethanolamine (POPE), all abundant in Gram-positive organisms. Changes in membrane permeability were followed by the release of calcein entrapped in liposomes at self-quenching concentrations, and changes in nanoscale lipid organization examined by Atomic Force Microscopy (AFM). Oritavancin caused a fast (< 5 min) and complete (> 95%) release of calcein from CL:POPE liposomes, and a slower but still substantial (50% in 60 min) release from POPG:POPE liposomes, which was (i) concentration-dependent (0-600 nM; [microbiologically meaningful concentrations]); (ii) enhanced by an increase in POPG:POPE ratio, and decreased when replacing POPG by DPPG. AFM of CL:POPE supported bilayers showed that oritavancin (84 nM) caused a remodeling of the lipid domains combined with a redisposition of the drug and degradation of the borders. In all the above studies, vancomycin was without a significant effect at 5.5 μM. Electrostatic interactions, together with lipid curvature, lipid polymorphism as well of fluidity play a critical role for the permeabilization of lipid bilayer and changes in lipid organization induced by oritavancin.  相似文献   

6.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

7.
Arbutin (hydroquinone-beta-D-glucopyranoside) is an abundant solute in the leaves of many freezing- or desiccation-tolerant plants. Its physiological role in plants, however, is not known. Here we show that arbutin protects isolated spinach (Spinacia oleracea L.) thylakoid membranes from freeze-thaw damage. During freezing of liposomes, the presence of only 20 mM arbutin led to complete leakage of a soluble marker from egg PC (EPC) liposomes. When the nonbilayer-forming chloroplast lipid monogalactosyldiacylglycerol (MGDG) was included in the membranes, this leakage was prevented. Inclusion of more than 15% MGDG into the membranes led to a strong destabilization of liposomes during freezing. Under these conditions arbutin became a cryoprotectant, as only 5 mM arbutin reduced leakage from 75% to 20%. The nonbilayer lipid egg phosphatidylethanolamine (EPE) had an effect similar to that of MGDG, but was much less effective, even at concentrations up to 80% in EPC membranes. Arbutin-induced leakage during freezing was accompanied by massive bilayer fusion in EPC and EPC/EPE membranes. Twenty percent MGDG in EPC bilayers completely inhibited the fusogenic effect of arbutin. The membrane surface probes merocyanine 540 and 2-(6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosph ocholi ne (NBD-C(6)-HPC) revealed that arbutin reduced the ability of both probes to partition into the membranes. Steady-state anisotropy measurements with probes that localize at different positions in the membranes showed that headgroup mobility was increased in the presence of arbutin, whereas the mobility of the fatty acyl chains close to the glycerol backbone was reduced. This reduction, however, was not seen in membranes containing 20% MGDG. The effect of arbutin on lipid order was limited to the interfacial region of the membranes and was not evident in the hydrophobic core region. From these data we were able to derive a physical model of the perturbing or nonperturbing interactions of arbutin with lipid bilayers.  相似文献   

8.
《Molecular membrane biology》2013,30(7-8):454-461
Abstract

Previous studies have shown that certain saturated lipids protect red blood cells (RBCs) during hypothermic storage but provide little protection during freezing or freeze-drying, whereas various unsaturated lipids destabilize RBCs during hypothermic storage but protect during freezing and freeze-drying. The protective effect of liposomes has been attributed to membrane modifications. We have previously shown that cholesterol exchange and lipid transfer between liposomes composed of saturated lipids and RBCs critically depends on the length of the lipid acyl chains. In this study the effect of unsaturated lipids with differences in their number of unsaturated bonds (18:0/18:1, 18:1/18:1, 18:2/18:2) on RBC membrane properties has been studied. RBCs were incubated in the presence of liposomes and both the liposomal and RBC fraction were analyzed by Fourier transform infrared spectroscopy (FTIR) after incubation. The liposomes caused an increase in RBC membrane conformational disorder at suprazero temperatures. The fluidizing effect of the liposomes on the RBC membranes, however, was found to be similar for the different lipids irrespective of their unsaturation level. The gel to liquid crystalline phase transition temperature of the liposomes increased after incubation with RBCs. RBC membrane fluidity increased linearly during the first 8 hours of incubation in the presence of liposomes. The increase in RBC membrane fluidity was found to be temperature dependent and displayed Arrhenius behaviour between 20 and 40°C, with an activation energy of 88 kJ mol-1. Taken together, liposomes composed of unsaturated lipids increase RBC membrane conformational disorder, which could explain their cryoprotective action.  相似文献   

9.
Peptide AS-48 induces ion permeation, which is accompanied by the collapse of the cytoplasmic membrane potential, in sensitive bacteria. Active transport by cytoplasmic membrane vesicles is also impaired by AS-48. At low concentrations, this peptide also causes permeability of liposomes to low-molecular-weight compounds without a requirement for a membrane potential. Higher antibiotic concentrations induce severe disorganization, which is visualized under electron microscopy as aggregation and formation of multilamellar structures. Electrical measurements suggest that AS-48 can form channels in lipid bilayers.  相似文献   

10.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

11.
The rate of release from multilamellar liposomes of the fluorescent probe carboxyfluorescein was determined as a measure of membrane permeability. Liposomes of phosphatidylcholine and different anionic phospholipids were incubated with low (1 microM) and high (3 mM) concentrations of calcium in the absence or presence of aminoglycoside antibiotics. The leakage of carboxyfluorescein into the medium was not caused by liposomal fusion as no vesicle fusion was observed in experiments with terbium and dipicolinic acid-loaded liposomes. The basal rate of carboxyfluorescein release (in the absence or presence of 1 microM calcium) from all types of liposomes ranged from 0.1 to 0.3% of trapped carboxyfluorescein per hour. The presence of 3 mM calcium caused the greatest increase in the rate of carboxyfluorescein release (about 9-fold) in liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP2) whereas liposomes containing the other anionic phospholipids (phosphatidylserine, phosphatidylinositol and phosphatidylinositol 4-phosphate) showed an approximate 5-fold increase. In the presence of 1 microM calcium, the aminoglycosides neomycin and gentamicin also increased the rate of carboxyfluorescein release, with PIP2-containing liposomes showing a 3-5-times greater response than the other liposomes, releasing up to 4.6% of trapped carboxyfluorescein per hour. This drug-induced release was dose-dependent and antagonized by calcium. In the presence of 3 mM calcium, 0.1 mM gentamicin or neomycin were ineffective while the drug at 1 mM affected carboxyfluorescein release from PIP2-liposomes only. The aminoglycoside antibiotics, neomycin, gentamicin, tobramycin, kanamycin, amikacin, netilmicin, as well as neamine and spectinomycin (all at 0.1 mM) showed a graded effect on the rate of carboxyfluorescein release from PIP2-containing vesicles in the presence of 0.1 mM calcium. The magnitude of the effect correlated well with the ototoxicity of the drugs previously determined directly in cochlear perfusions in the guinea pig. The study demonstrates that aminoglycoside antibiotics are capable of altering membrane permeabilities and that this effect is most pronounced if PIP2 is present in the bilayers. The excellent correlation between this membrane action and the in-situ toxicity of the drugs further establishes the specific role of PIP2 in the molecular mechanism of aminoglycoside-induced hearing loss. Moreover, it confirms the usefulness of such physicochemical models for the screening and prediction of aminoglycoside toxicity.  相似文献   

12.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

13.
Poly(ethylene glycol) 6000 induced a concentration-dependent, time-dependent decrease in the latency of the reaction between Arsenazo III sequestered in liposomes and extraliposomal Ca2+. This was mediated by a gross change in liposomal permeability, i.e. by a release of Arsenazo III from liposomes rather than simply by an entry of Ca2+. The loss of latency was strongly temperature-dependent, and it was markedly diminished on increasing the cholesterol content of the liposomes. It was apparently not due to an osmotic stress of the polymer. The high activation energy found (63 kJ · mol?1) is thought to indicate that the loss of latency resulted from local discontinuities in the lipid bilayers, caused by dehydration, rather than from partial or total lysis. Related microscopy experiments indicated that the polymer also caused the liposomes to fuse, and it is suggested that membrane fusion may have occurred at the sites of dehydration-induced discontinuities in adjacent bilayers, in addition the polymer was found to enhance the permeability of hen erythrocytes to Ca2+ in a manner that was comparable to its effect on liposomal latency, and it is proposed that cell fusion induced by poly(ethylene glycol) may occur at the sites of similarly induced discontinuities in the phospholipid bilayers of two closely adjacent cells.  相似文献   

14.
Lipid asymmetry is a ubiquitous property of the lipid bilayers in cellular membranes and its maintenance and loss play important roles in cell physiology, such as blood coagulation and apoptosis. The resulting exposure of phosphatidylserine on the outer surface of the plasma membrane has been suggested to be caused by a specific membrane enzyme, scramblase, which catalyzes phospholipid flip-flop. Despite extensive research the role of scramblase(s) in apoptosis has remained elusive. Here, we show that phospholipid flip-flop is efficiently enhanced in liposomes by oxidatively modified phosphatidylcholines. A combination of fluorescence spectroscopy and molecular dynamics simulations reveal that the mechanistic basis for this property of oxidized phosphatidylcholines is due to major changes imposed by the oxidized phospholipids on the biophysical properties of lipid bilayers, resulting in a fast cross bilayer diffusion of membrane phospholipids and loss of lipid asymmetry, requiring no scramblase protein.  相似文献   

15.
Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution.  相似文献   

16.
The effects of ethylene oxide and propylene oxide block copolymers (pluronics) on the permeability of several weak acids and bases through bilayer lipid membranes have been studied by the methods of monitoring (1) pH shifts near planar bilayers, (2) doxorubicin fluorescence quenching inside liposomes, and (3) current transients in the presence of hydrophobic anions. It has been shown that pluronics facilitate the permeation of comparatively large molecules (such as 2-n-undecylmalonic acid and doxorubicin) across lipid bilayers, while the permeation of small solutes (such as ammonium and acetic acid) remains unaffected. Pluronics also accelerate the translocation of large hydrophobic anions (tetraphenylborate). The effect of pluronics correlates with the content of propylene oxide units: it is enhanced when the portion of polypropylene oxide block in the copolymer is increased. The action of the pluronic on lipid membrane permeability differs from the effect of the conventional detergent Triton X-100, which does not affect doxorubicin transport if added at concentrations similar to those used for pluronics. It has been proposed that pluronics accelerate the processes of solute diffusion within lipid bilayers (in a structure-dependent manner) rather than influencing the rate of solute adsorption/desorption on the membrane surface. We suppose that the effect of pluronics on doxorubicin permeation across lipid bilayers along with the known effect on the multidrug resistance protein determines its influence on the therapeutic activity of anthracycline drugs.  相似文献   

17.
The fusion of liposomes with planar lipid bilayers was monitored by two different methods. (a) Liposomes consisting of phospholipids and cholesterol were added to the aqueous phase bathing the cholesterol-deficient planar lipid bilayers in the presence of nystatin. The resulting increase in the planar lipid bilayer's electrical conductance was considered indicative of fusion. (b) Transplanar lipid bilayer injection of 35SO42? trapped inside the liposomes.It is shown by both methods that fusion is specifically dependent on the presence of negatively charged phospholipids both in the liposomes and the planar lipid bilayers and on Ca2+ in the aqueous phase of the fusion system.  相似文献   

18.
The aim of the present study was to further understand how changes in membrane organization can lead to higher rates of lipid oxidation. We previously demonstrated that Al(3+), Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) promote lipid packing and lateral phase separation. Using the probe Laurdan, we evaluated in liposomes if the higher rigidity of the membrane caused by Al(3+) can alter membrane phase state and/or hydration, and the relation of this effect to Al(3+)-stimulated lipid oxidation. In liposomes of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylserine, Al(3+) (10-100 microM) induced phase coexistence and displacement of T(m). In contrast, in liposomes of brain phosphatidylcholine and brain phosphatidylserine, Al(3+) (10-200 microM) did not affect membrane phase state but increased Laurdan generalized polarization (GP = -0. 04 and 0.09 in the absence and presence of 200 microM Al(3+), respectively). Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) also increased GP values, with an effect equivalent to a decrease in membrane temperature between 10 and 20 degrees C. GP values in the presence of the cations were significantly correlated (r(2) = 0.98, P < 0.001) with their capacity to stimulate Fe(2+)-initiated lipid oxidation. Metal-promoted membrane dehydration did not correlate with ability to enhance lipid oxidation, indicating that dehydration of the phospholipid polar headgroup is not a mechanism involved in cation-mediated enhancement of Fe(2+)-initiated lipid oxidation. Results indicate that changes in membrane phospholipid phase state favoring the displacement to gel state can facilitate the propagation of lipid oxidation.  相似文献   

19.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

20.
L Zhang  R Benz  R E Hancock 《Biochemistry》1999,38(25):8102-8111
To investigate the influence of proline residues on the activity of alpha-helical peptides, variants were synthesized with insertions of proline residues to create peptides without proline, or with one or two prolines. The influence of the proline-induced bends was assessed by circular dichroism in the presence of liposomes, and the ability of the peptides to kill microorganisms, to permeabilize the outer and cytoplasmic membranes of Escherichia coli, to bind to liposomes, to form channels in planar lipid bilayers, and to synergize with conventional antibiotics. Representative peptides adopted alpha-helical conformations in phosphatidylcholine/phosphatidylglycerol (POPC/POPG, 7:3) liposomes as well as in 60% trifluoroethanol solution, as revealed by circular dichroism (CD) spectroscopy. However, the percent of helicity decreased as the number of proline residues increased. Tryptophan fluorescence spectroscopy showed that all of these peptides inserted into the membranes of liposomes as indicated by a blue shift in the emission maximum and an increase in the fluorescence intensity of the single tryptophan at residue 2. Quenching experiments further prove that the tryptophan residue was no longer accessible to the aqueous quencher KI. The peptide that lacked proline exhibited the highest activity [minimal inhibitory concentrations (MICs) of 0.5-4 microg/mL] against all tested Gram-negative and Gram-positive bacteria, but was hemolytic at 8 microg/mL. The single-proline peptides exhibited intermediate antibacterial activity. Peptides with two proline residues were even less active with moderate MICs only against E. coli. With only one exception from each group, the peptides were nonhemolytic. The ability of the peptides to demonstrate synergy in combination with conventional antibiotics increased as the antibacterial effectiveness decreased. All peptides bound to bacterial lipopolysaccharide and permeabilized the outer membrane of E. coli to similar extents. However, their ability to permeabilize the cytoplasmic membrane of E. coli as assessed by the unmasking of cytoplasmic beta-galactosidase decreased substantially as the number of proline residues increased. Correspondingly, increasing the number of proline residues caused a decreased ability to form channels in planar lipid bilayers, and the hemolytic, proline-free peptide tended to cause rapid breakage of planar membranes. Thus, the number of bends created by insertion of proline residues is an important determinant of antimicrobial, hemolytic, and synergistic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号