首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The movements during fertilization have been investigated with differential interference optics and recorded by time-lapse video microscopy of the clear egg of the sea urchin Lytechinus variegatus. Sperm-egg binding occurs rapidly, and following a time when the sperm gyrates on the egg surface, gamete fusion occurs. A rapid cortical contraction radiates from the fusion site and is succeeded by the elevation of the fertilization coat. Sperm incorporation occurs in two stages: the fertilization cone enlarges around and above the erect and immotile sperm and then the sperm head, midpiece, and tail are displaced along the subsurface region of the egg at an average rate of 3.5 μm/min. The formation of the sperm aster moves the male pronucleus from the subsurface region of the egg toward the egg center at a rate of 4.9 μm/min. When the rays of the radial sperm aster appear to contact the female pronucleus, the female pronucleus migrates at a rate of 14.6 μm/min to the center of the sperm aster. The now adjacent pronuclei are moved to the egg center by the continuing enlargement of the sperm aster at a rate of 2.6 μm/min. Syngamy is usually preceded by the disassembly of the sperm aster. The centripetal migration of the pronuclei appears involved in the establishment of the first embryonic axis; cleavage occurs within 8° of the direction of this centering motion.  相似文献   

2.
The penetration of the sperm into the egg, and the movements of the male and female pronuclei were followed from sperm attachment through pronuclear fusion, using time-lapse video microscopy of gametes and zygotes of the sea urchin Lytechinus variegatus (23° C). The pronuclei move in four stages: I. Sperm Entry Phase, following sperm-egg fusion and a rapid radiating surface contraction (5.9 ± 1.3 μm/second) when egg microvilli engulf the sperm head, midpiece, and tail to form the fertilization cone and the sperm tail beats in the egg cytoplasm; II. Formation of the Sperm Aster, which pushes the male pronucleus centripetally at a rate of 4.9 ± 1.7 μm/minute starting 4.4 ± 0.5 minutes after sperm-egg fusion, as the male pronucleus undergoes chromatin decondensation; III. Movement of the Female Pronucleus, the greatest and fastest of the pronuclear motions at a rate of 14.6 ± 3.5 μm/minute at 6.8 ± 1.2 minute after sperm-egg fusion, which establishes the contact between the pronuclei; and IV. Centration of the Pronuclei to the egg center at a rate of 2.6 ± 0.9 μm/minute by 14.1 ± 2.6 minutes after sperm-egg fusion. Pronuclear fusion typically occurs after stage IV and proceeds rapidly starting 14.7 ± 3.6 minutes after sperm-egg fusion with the male pronucleus coalescing into the female pronucleus at a rate of 14.2 ± 2.6 μm/minute.  相似文献   

3.
The responses of the egg to insemination in a modified Fish Ringer's solution (FRS) were examined in eggs of the zebrafish ( Brachydanio rerio ) primarily by scanning electron microscopy. FRS is a physiological saline which temporarily inhibits parthenogenetic activation of the egg for 5–8 min. Spermatozoa were collected in a small volume of water and pipetted over eggs in FRS. Eggs inseminated in FRS typically incorporated the fertilizing sperm within 3–4 min. Inseminated cells showed an absence of a fertilization cone and no cortical granule exocytosis. The deep conical depression in the egg surface beneath the micropyle remained unaltered. Control eggs inseminated in tank water developed a large fertilization cone during sperm incorporation. Occasionally, eggs inseminated in water were observed to incorporate the entire sperm head prior to egg activation. Our results corroborate earlier findings showing that in the zebrafish, cortical granule exocytosis, fertilization cone formation and elevation of the sperm entry site are not triggered by the fertilizing sperm in experimental conditions (18, 19). Furthermore, sperm incorporation requires neither egg activation nor formation of a fertilization cone in this fish.  相似文献   

4.
金鱼精子入卵过程的扫描电镜观察   总被引:22,自引:0,他引:22  
本文采用扫描电镜观察了金鱼(Carassius auratus)卵壳膜(chorion)表面结构和精子入卵过程。在壳膜的卵膜孔(micropyle)区有5—10条沟和嵴。位于精孔管下面,卵的质膜为一束较长的微绒毛组成的精子穿入部(sperm entry site)。授精5s,精子头的顶部已附着于精子穿入部,随即两者的质膜发生融合,而围于精子头部四周的微绒毛迅速伸长形成一受精锥,它不断将精子头部包裹。授精110s,精子的头部和颈部已完全进入卵内,受精锥本身也渐趋消失,但精子尾部仍平躺于卵的表面。皮层小泡是在授精30s后才开始破裂并释放其内含物,导致卵子表面呈蜂窝状,并在无膜内表面附着了大量球状物。  相似文献   

5.
The distribution of actin was studied during early events of sheep fertilization by fluorescence microscopy after staining with 7-nitrobenz-2-oxal-1.3 diazole (NBD)-phallacidin and anti-actin antibody and by electron microscopy after heavy meromyosin labelling. Unfertilized and fertilized eggs exhibited a continuous band of fluorescence with both NBD-phallacidin and anti-actin antibody. Unlike in mice, no high concentration of actin overlying the spindle was detected in ovulated sheep oocytes. At the site of sperm head incorporation, the fertilization cone developed above the decondensing male chromatin and was underlined by a submembranous area rich in microfilaments. A similar actin network was observed in the cortex of the second polar body. Cytochalasin D was used to investigate the role of actin during the fertilization process. This drug did not prevent sperm fusion and incorporation but inhibited polar body abstriction and fertilization cone development and retarded sperm tail incorporation. Moreover, in the presence of the drug, the anchorage of the metaphase II spindle at the surface of the egg was destroyed. The role of microfilaments in these early events is discussed.  相似文献   

6.
The effects of selected concentrations of cytochalasins B (1-10 micrograms/ml; CB) and D (10, 50 micrograms/ml; CD) on the morphology and fertilization of zebra danio (Brachydanio) eggs were studied primarily with light and scanning electron microscopy. Eggs pretreated with either CB (10 micrograms/ml) or CD (10, 50 micrograms/ml) prepared in Fish Ringer's solution-0.5% DMSO showed a flattened shape, alterations in the form of surface microplicae and microvilli, and occasional spontaneous exocytosis of cortical granules. All eggs preincubated in either CB or CD were activated upon transfer to tap water, showing cortical granule exocytosis, elevation of the chorion, and formation of a fertilization cone. When eggs were pretreated for 5 minutes with 1-5 micrograms/ml CB or 10 micrograms/ml CD and inseminated, they incorporated the fertilizing sperm and typically developed to the two-cell stage. A single sperm cell attached to and fused with the sperm entry site microvilli but failed to enter the cytoplasm in eggs preincubated with 10 micrograms/ml CB. Eggs that were immersed continuously in either CB (10 micrograms/ml) or CD (50 micrograms/ml) 15 seconds after insemination also failed to incorporate the fertilizing sperm. Treatment of eggs after insemination with CD (10 micrograms/ml), however, did not prevent sperm cell incorporation or fertilization cone formation. Our drug data suggest the presence of actin-containing filaments in the danio egg before and following fertilization. These filaments appear to play a role in maintaining the shape of the egg cell and its surface specializations and in the incorporation of the fertilizing sperm. The fertilization cone appears to form independently of actin polymerization.  相似文献   

7.
Surface ultrastructure of paddlefish eggs before and after fertilization   总被引:2,自引:0,他引:2  
The surface ultrastructure of eggs of the paddlefish Polyodon spathula was investigated by scanning electron microscopy. Mature eggs of paddlefish possess four to 12 micropyles in the animal polar region. There are sperm entry sites in the egg surface under the micropyles which consist of tufts of microvilli. Five to nine sperm entry sites were observed on mature eggs. Probably, the number of sperm entry sites corresponds to the number of micropyles. In a few eggs, 1 min after fertilization the ball-like enlarged top of a cytoplasmic process (probably a full-grown fertilization cone) had reached the external aperture or the canal of several micropyles. In other micropyles of the same egg, a few smaller cytoplasmic processes or flocculent material were found in the micropylar canal. With one exception, no sperm tails were found there. The formation of the full-grown cytoplasmic process is possibly initiated before the cortical reaction has started in an area of the animal hemisphere. Three, 10 and 20 min after fertilization, the uneven surface of the cortical cytoplasm in the animal polar region rose gently where microvilli were much less than the in other area and together with a secondary polar body at the latter stage. Taken together, paddlefish eggs may have sperm entry sites corresponding to the number of micropyles and respond to the stimulus of fertilization by forming a few cytoplasmic processes–fertilization cones (larger and smaller). Sperm penetration into the egg may be achieved at an earlier stage of fertilization (sperm-egg contact), as inferred from the fact that a secondary polar body was formed at the 20-min stage irrespective of the exceptional finding of the sperm tail.  相似文献   

8.
The present study examined the role of the cytoskeleton in sperm entry and migration through the egg cytoplasm during fertilization in the zebra mussel, Dreissena polymorpha (Bivalvia: Veneroida: Dreissenidae). Fertilization in this freshwater bivalve occurs outside the mantle cavity, permitting detailed observations of fertilization. After its initial binding to the egg surface, the sperm is incorporated in two stages: (1) a gradual incorporation of the sperm nucleus into the egg cortex, followed by (2) a more rapid incorporation of the sperm axoneme, and translocation of the sperm head through the egg cytoplasm. Initial incorporation into the egg cortex was shown to be microfilament dependent. Microfilaments were found in the sperm's preformed acrosomal filament, the microvilli on the egg surface, and in an actin-filled insemination cone surrounding the incorporating sperm. Treatment of eggs with cytochalasin B inhibited sperm entry in a dose- and time-dependent manner. Microtubule polymerization was not necessary for initial sperm entry. Following incorporation of the sperm head, the flagellar axoneme entered the egg cytoplasm and remained active for several minutes. Associated with the incorporated axoneme was a flow of cytoplasmic particles originating near the proximal end of the flagella. Inhibition of microtubule polymerization prevented entry of the sperm axoneme, and the subsequent cytoplasmic current was not observed. After sperm incorporation into the egg cortex, no appreciable microfilaments were associated with the sperm nucleus. A diminutive sperm aster was associated with the sperm nucleus during its decondensation, but no obvious extension toward the female pronucleus was observed. The sperm aster was significantly smaller than the spindle associated with the female pronucleus, suggesting a reduced role for the sperm aster in amphimixis.  相似文献   

9.
The surface topography of the rat egg was examined during fertilization in vitro and in vivo. Using phase optics, 348 in vitro fertilized and 50 in vivo fertilized eggs were continuously monitored throughout the 7-hour period of sperm incorporation. A myriad of different surface configurations were seen, with each egg exhibiting one or more of the following changes. A small number of eggs (4–6%) formed surface elevations over the sperm head after its detachment from the flagellum, 15–30 min after sperm-egg fusion; 1 to 1.5 hr after fusion, 40–50% of the eggs produced the so-called incorporation cone, a prominent surface elevation over the decondensing sperm nucleus. The vast majority of eggs (74–82%) formed surface elevations over the proximal tip of the flagellum 2–3 hr after sperm-egg fusion. These had no association with the decondensing sperm nucleus. A few eggs (11–12%) exhibited multiple protrusions that were distributed randomly about the egg surface, whereas 14–20% did not manifest any surface elevations and remained spherical throughout the sperm incorporation period. Regardless of the type of surface change, all of the eggs resumed a spherical shape by the time sperm incorporation was complete. These observations are in contrast to the conclusions by previous authors that formation of the so-called incorporation cone over the decondensing sperm nucleus is a ubiquitous event.  相似文献   

10.
Morphological studies on the gametes and entry of the spermatozoan into the egg of the zebra danio, Brachydanio rerio, were conducted primarily with scanning electron microscopy. The spermatozoan showed a spherical head, which lacked an acrosome, a midpiece containing several mitochondria, and a flagellum. Observations of the unfertilized egg confirmed and extended prior studies showing a distinct cluster of microvilli on the plasma membrane, identified as the sperm entry site, beneath the inner micropylar aperture (Hart and Donovan, '83). The fertilizing spermatozoan attached to the sperm entry site within 5 seconds of the mixing of a gamete suspension. Binding to the egg microvilli appeared restricted to the equatorial surface of the spermatozoan. Fusion between the plasma membranes of the interacting gametes was followed by the formation of a distinct, nipple-shaped fertilization cone. The sperm head was partially incorporated into the fertilization cone cytoplasm by 60 seconds postinsemination. The incorporation of the entire sperm head, midpiece, and a portion of the flagellum occurred between 1 and 2 minutes. During this time, the fertilization cone shortened and was transformed into a massive, blister-like cytoplasmic swelling. Concurrently, upward movements of the ooplasm resulted in the gradual disappearance of the original depression in the egg surface containing the sperm entry site. The second polar body, fully developed by 10 minutes postinsemination, formed approximately 10-15 microns from the site of sperm penetration. Development of the fertilization cone, formation of the second polar body and exocytosis of cortical granules at the sperm entry site readily occurred in parthenogenetically activated eggs, indicating that these surface rearrangements do not require sperm binding and/or fusion.  相似文献   

11.
Fertilization Cone of Carp Eggs as Revealed by Scanning Electron Microscopy   总被引:3,自引:1,他引:2  
The process of formation of the fertilization cone in carp eggs was examined by scanning electron microscopy. The fertilized eggs responded to penetration of one sperm by primary and secondary steps of formation of a fertilization cone of unique morphology. In the primary step, the earliest fertilization cone was seen at the superior or anterosuperior part of a fused sperm head in inseminated eggs fixed 20 sec after immersion in fresh water. The cone reached a maximum of more than 10 μm in length and 3–4 μm in thickness by 40 sec, resulting in a transient plugging of the micropylar canal. In the secondary step, usually seen at 105–120 sec, a conformation reminiscent of a very small caldera volcano was formed, with the shortened earlier cone and part of the sperm tail at its top. By 2.5 min, the fertilization cone had become conical, and the sperm tail still extended from its top. At 3 min, the sperm tail was often not detectable, but a cytoplasmic eminence was still seen as a trace of the fertilization cone. The role of the earlier fertilization cone in blocking polyspermy is discussed.  相似文献   

12.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

13.
This light and transmission electron microscopical study shows that the first polar body is given off before ovulation and that part of its cell membrane and that of the surrounding oocyte have long microvilli at the time of its ejection. Several layers of cumulus cells initially surround the secondary oocyte and first polar body, but the ovulated oocytes in the oviducts in the process of being fertilized do not have cumulus cells around them. Partly expelled second polar bodies occur in the oviduct; they are elongated structures that lack organelles and have electron-dense nuclei. A small fertilization cone appears to form around the sperm tail at the time of sperm entry into the egg and an incorporation cone develops around the sperm head in the egg cytoplasm. In three fertilized eggs a small hole was seen in the zona, which was presumably formed by the spermatozoon during penetration. Cortical granules, present in ovarian oocytes, are not seen in fertilized tubal or uterine eggs; release of their contents probably reduces the chances of polyspermy, although at least one polyspermic fertilized egg was seen and several other fertilized eggs had spermatozoa within the zona pellucida. In the zygote the pronuclei come to lie close together, but there was no evidence of fusion. A "yolk mass," which becomes eccentric before ovulation, is extruded by the time the two-cell embryos are formed, but many vacuoles remain in the non-yolky pole of the egg. A shell membrane of variable thickness is present around all uterine eggs but its origin remains undetermined.  相似文献   

14.
At the time of in vivo sperm–egg fusion in the rat, a small region of the oolemma under the head of the fertilizing sperm is observed to be free of microvilli. The microvilli-free region increases in area, and by one hour after sperm–egg contact extends over an area 20–30 μ in circumference and bulges out to form an “incorporation cone” visible by light microscopy. The microvilli-free incorporation cone reaches its maximum size at about two hours after sperm–egg interaction. It soon becomes smaller and has disappeared three to four hours after sperm–oocyte fusion. The cone cytoplasm is characterized by a 0.1 μ zone of thin filaments below the plasma membrane. Cytochalasin-B, 2.5 μg/ml, prevents formation of the cone or destroys the intact cone. It is suggested that micro filaments may be involved in the formation of the incorporation cone.  相似文献   

15.
The sensitivity of specific stages of fertilization to microfilament inhibitors (cytochalasins B (CB), D (CD), and E (CE) and phalloidin) and to inhibitors of microtubule assembly (colcemid (CMD), colchicine (CLC), griseofulvin (GSF), maytansine (MAY), nocodazole (NCD), podophyllotoxin (PDP), and vinblastine (VB)) was investigated using differential interference contrast, time-lapse video microscopy of the sea urchin Lytechinus variegatus. Cytochalasins (CDCE>CB) will prevent sperm incorporation if added prior to or simultaneous with insemination. Sperm-egg fusion and the cortical reaction appear normal, but then the subsequent elevation of the fertilization coat lifts and eventually detaches the ‘fertilizing’ sperm from the egg plasma membrane. When the cytochalasins are added after fusion, the forming fertilization cone is rapidly resorbed, and the lateral displacement of the sperm along the egg cortex is terminated; the pronuclear migrations and mitoses occur normally though cytokinesis is never observed. Cytochalasin treatment before or within 2 min of insemination results in the development of aberrant egg cortices, whereas cytochalasin treatments after 2 min post-fusion have little effect. Phalloidin results in large and long-lasting fertilization cones and a retardation of the rate of sperm incorporation. Eggs exposed to any of the microtubule inhibitors 15 min prior to insemination will incorporate the spermatozoon, though the formation of the sperm aster and the accompanying pronuclear migrations are prevented. Interestingly, the final stage of sperm incorporation involving a lateral displacement of the sperm along the egg cortex is greater (27.1 vs 12.4 μm in controls) and faster (5.4 vs 3.5 μm/min in controls) in microtubule-inhibited eggs. GSF and VB, which readily permeate fertilized eggs, will prevent the formation of the sperm aster if added 3 min after sperm-egg fusion, they will prevent the migration of the female pronucleus if added 5 or 7 min after sperm-egg fusion, pronuclear centration if added 10 min post-fusion, and syngamy if added 12 min post-fusion. CLC- or CMD- treated eggs will develop normally if these drugs are photochemically inactivated with 366 nm light within 4 min post-fusion, arguing that sperm incorporation is completely independent of assembling microtubules. These results indicate that microfilament inhibitors will prevent sperm incorporation and the restructuring of the fertilized egg cortex, and that microtubule inhibitors will prevent the formation and functioning of the sperm aster during the pronuclear migrations; an interplay between cortical microfilaments and cytoplasmic microtubules appears required for the successful completion of fertilization.  相似文献   

16.
鳙鱼受精早期扫描电镜研究   总被引:10,自引:1,他引:9  
张天荫  封树芒 《动物学报》1991,37(3):293-296
镛鱼(Aristichthys nobilis)受精是精子通过卵膜孔附着于卵质膜表面精子穿入部的微绒毛,两者迅即发生融合,但未见到有明显的受精锥。授精一分钟,精子整个头部已与卵的质膜发生融合,并看到有精子整个尾部已被微绒毛包裹的情况。在受精精子附近有一尚未与卵完全分开的第一极体。本文还讨论了精子穿入部的功能。  相似文献   

17.
The process of sperm incorporation into starfish (Asterias amurensis) oocytes was examined by electron and fluorescence microscopy. The fertilization cone began to form at the place where the acrosomal process fused with the egg surface and developed into an inverted conical mass containing a small amount of electron-dense cytoplasm. Microfilaments, which stained with NBD-phallacidin, were detected in the fertilization cone. Microvillar protrusions from the fully grown fertilization cone engulfed the sperm head outside the fertilization membrane. The sperm organelles were incorporated into the egg cortex with the absorption of the protrusions. Cytochalasin B inhibited sperm incorporation, fertilization cone formation, and actin filament organization. It is suggested that the development and reduction of the fertilization cone, which depend on the functioning of microfilaments, are necessary for sperm incorporation in starfish.  相似文献   

18.
Wave of cortical actin polymerization in the sea urchin egg   总被引:2,自引:0,他引:2  
The distribution of actin filaments in the cortical layer of sea urchin eggs during fertilization has been investigated by light microscopy using fluorescently labeled phallotoxins. The cortical layer of both whole eggs and cortices isolated on a glass surface was examined. In cortices of unfertilized eggs, numerous fluorescent spots were seen, which may correspond to short actin filament cores in microvilli. After insemination, one of the sperm-attaching points on the egg surface first became strongly fluorescent. This fluorescence grew around the point of sperm penetration with the growth of the fertilization cone. Then, the cortical layer of the egg around the fertilization cone became strongly fluorescent and the fluorescence propagated in a wavelike manner over the entire cortex. The mechanism of the propagation of actin polymerization is discussed.  相似文献   

19.
Microvilli on sea urchin eggs: a second burst of elongation   总被引:6,自引:0,他引:6  
A scanning EM study reveals about 300,000 microvilli on each egg of the sea urchin Strongylocentrotus droebachiensis. The microvilli are about 0.2 μm long before fertilization, elongate to about 0.5 μm soon after fertilization (the “first burst” of microvillus elongation), and subsequently elongate again about midway between fertilization and first cell division (the “second burst” of elongation). The second burst occurs during a discrete 30-min period and results in some microvilli being as long as 10 μm, although the average length is about 1.8 μm. The surface area of the egg following the second burst is about 2.7 times the area of the unfertilized egg.  相似文献   

20.
Anti-tubulin immunofluorescence microscopy is used here to demonstrate the configurations of the microtubule-containing structures which participate in the pronuclear movements of sea urchin fertilization. This technique shows that the egg is devoid of microtubules until after the fertilizing sperm is fully incorporated. All the microtubules which appear during the course of fertilization are organized around the base of the sperm head and the sperm aster thus formed behaves in a way that could account for the characteristic motions of the male and female pronuclei as documented by time-lapse video microscopy. Extension of astral microtubules appears to be responsible for the slow (ca. 2.5 μm min?1) movement of the sperm aster into the cytoplasm of the egg; the rapid (ca. 15 μm min?1) migration of the female pronucleus to the sperm aster seems to depend on connection of the female pronucleus to microtubules of the sperm aster. Continued extension of astral microtubules after the pronuclei are brought into conjunction can account for the centripetal motion of the paired (or fused) pronuclei and for the positioning of the zygote nucleus in the center of the egg. The behavior of astral microtubules during these motions suggests that they are capable of transmitting both pushing and pulling forces. All the pronuclear movements, and the assembly of detectable microtubules, are sensitive to the microtubule inhibitors griseofulvin and colchicine. Because of this sensitivity, and since all the observable microtubules within the egg during fertilization arise at the sperm aster, it is concluded that the pronuclear movements of fertilization result from the actions of the sperm aster. The pronuclear movements of sea urchin fertilization represent a simple but striking example of microtubule-mediated motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号