首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought.  相似文献   

2.
With the aim of identifying novel genes regulating cartilage development and degeneration, we screened a cartilage-specific expressed sequence tag database. Esophageal cancer related gene 4 (ECRG4) was selected, based on the criteria of ‘chondrocyte-specific’ and ‘unknown function.’ ECRG4 expression was particularly abundant in chondrocytes and cartilage, compared to various other mouse tissues. ECRG4 is a secreted protein that undergoes cleavage after secretion. The protein is specifically expressed in chondrocytes in a manner dependent on differentiation status. The expression is very low in mesenchymal cells, and dramatically increased during chondrogenic differentiation. The ECRG4 level in differentiated chondrocytes is decreased during hypertrophic maturation, both in vitro and in vivo, and additionally in dedifferentiating chondrocytes induced by interleukin-1β or serial subculture, chondrocytes of human osteoarthritic cartilage and experimental mouse osteoarthritic cartilage. However, ectopic expression or exogenous ECRG4 treatment in a primary culture cell system does not affect chondrogenesis of mesenchymal cells, hypertrophic maturation of chondrocytes or dedifferentiation of differentiated chondrocytes. Additionally, cartilage development and organization of extracellular matrix are not affected in transgenic mice overexpressing ECRG4 in cartilage tissue. However, ectopic expression of ECRG4 reduced proliferation of primary culture chondrocytes. While the underlying mechanisms of ECRG4 expression and specific roles remain to be elucidated in more detail, our results support its function as a marker of differentiated articular chondrocytes and cartilage destruction.  相似文献   

3.
4.
Peripheral clocks are essential for driving cell differentiation. In osteoarthritis, loss of the normal differentiated chondrocyte (cartilage cell) phenotype is causative of disease. We investigated whether clock gene expression differed in osteoarthritic compared to “healthy” chondrocytes and used RNAi to determine whether the differences observed could affect chondrocyte phenotype. Following serum shock, PER2 expression was significantly higher, whereas BMAL1 expression was significantly lower, in osteoarthritic chondrocytes. Knockdown of BMAL1 in “healthy” chondrocytes was associated with higher cell proliferation and MMP13 expression, features characteristic of the osteoarthritic chondrocyte phenotype. Chondrocyte-intrinsic clock disruption may be a critical early step in osteoarthritis development.  相似文献   

5.
A significant number of natural compounds have been shown to regulate the behavior of the cells, in collaboration with cellular proteins. CCN2/connective tissue growth factor (CTGF) has been reported to have essential roles in cartilage development, chondrocyte proliferation and differentiation as well as regulation of the extracellular matrix metabolism. Previous studies demonstrated the capability of CCN2 to regenerate surgical defects in articular cartilage of rat knee. Also, transgenic mice over-expressing cartilage-specific CCN2 were shown to be more resistant to aging-related cartilage degradation. We hypothesized that small molecules that induce CCN2 in chondrocytes could be novel candidates to increase the resistance to aging-related cartilage degradation, or even to correct cartilage degenerative changes incurred in OA. Therefore, this study screened a compound library and identified the β-carboline alkaloid harmine as a novel inducer of CCN2 in human chondrocytic HCS-2/8 cells and osteoarthritic articular chondrocytes. Harmine increased the expression of the cartilage markers aggrecan and COL2α1, as well as that of the master regulator of chondrogenesis, SOX-9. Moreover, harmine notably induced chondrogenesis of prechondrocytic ATDC5 cells in micromass cultures. The chondroprotective effect of harmine was investigated under inflammatory condition by stimulation with TNFα, and harmine was shown to ameliorate TNFα-induced decrease in expression of CCN2 and cartilage markers. These findings uncover novel chondrogenic effects of harmine and indicate harmine as a potential drug for prevention and/or repair of cartilage degradation.  相似文献   

6.
Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment.  相似文献   

7.
In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.  相似文献   

8.
Aigner T  McKenna L  Zien A  Fan Z  Gebhard PM  Zimmer R 《Cytokine》2005,31(3):227-240
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro stimulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.  相似文献   

9.
10.
In order to elucidate the mechanism of cartilage degradation in osteoarthritis (OA), we established a cell assay system. Under the stimulation of all-trans retinoic acid (ATRA), the human chondrosarcoma cell line HCS-2/8 increased proteoglycan release from inactivated bovine nasal cartilage (BNC) and the results suggested the involvement of membrane-bound metalloproteinase(s). Therefore, we focused on the induction of a disintegrin and metalloproteinase (ADAM) superfamily upon ATRA stimulation. Of all ADAMs tested, only ADAM28 was induced by ATRA in HCS-2/8 cells and also in human primary chondrocytes. We found that transfection of ADAM28 or its alternatively spliced soluble form augmented proteoglycan release in the cell assay; however, a mutant soluble form in which a portion of the disintegrin domain was deleted did not have proteoglycan-releasing activity, implying the importance of the domain for enzyme localization and substrate recognition for cartilage degradation in OA.  相似文献   

11.
12.
13.
14.
15.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

16.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

17.
Expression of β1 integrins was studied in vitro as articular chondrocytes reestablished a matrix in culture and in situ in a nonhuman primate model of osteoarthritis in order to investigate a potential role for integrins in mediating cell-extracellular matrix interactions in cartilage. Chondrocytes were found to express α1β1, α3β1, and α5β1 integrins both in vitro and in situ. Cell surface expression of β1 integrins increased as chondrocytes were maintained in culture from 3 to 7 days. Increased β1 integrin expression was also observed in osteoarthritic cartilage compared with normal cartilage. The greatest relative increase in both systems was noted for the α1β1 integrin. The increase in chondrocyte β1 integrin expression in vitro was noted in both monolayer and alginate cultures and occurred prior to detectable changes in the differentiated phenotype of the chondrocyte. Disruption of the cytoskeleton with the drug dihydrocytochalasin B inhibited the cell culture induced increase in integrin expression, while treatment of cultured cells with TGF-β resulted in increased expression of the α5β1 integrin. The modulation of β1 integrin expression noted in vitro and in situ indicates that chondrocytes are capable of regulated expression of β1 integrins and suggests that β1 integrins may play an important role in mediating chondrocyte-extracellular matrix interactions in cartilage.  相似文献   

18.
The extracellular matrix surrounding chondrocytes within a chondron is likely to affect the metabolic activity of these cells. In this study we investigated this by analyzing protein synthesis by intact chondrons obtained from different types of cartilage and compared this with chondrocytes. Chondrons and chondrocytes from goats from different cartilage sources (articular cartilage, nucleus pulposus, and annulus fibrosus) were cultured for 0, 7, 18, and 25 days in alginate beads. Real‐time polymerase chain reaction analyses indicated that the gene expression of Col2a1 was consistently higher by the chondrons compared with the chondrocytes and the Col1a1 gene expression was consistently lower. Western blotting revealed that Type II collagen extracted from the chondrons was cross‐linked. No Type I collagen could be extracted. The amount of proteoglycans was higher for the chondrons from articular cartilage and nucleus pulposus compared with the chondrocytes, but no differences were found between chondrons and chondrocytes from annulus fibrosus. The expression of both Mmp2 and Mmp9 was higher by the chondrocytes from articular cartilage and nucleus pulposus compared with the chondrons, whereas no differences were found with the annulus fibrosus cells. Gene expression of Mmp13 increased strongly by the chondrocytes (>50‐fold), but not by the chondrons. Taken together, our data suggest that preserving the pericellular matrix has a positive effect on cell‐induced cartilage production. J. Cell. Biochem. 110: 260–271, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
To compare the potential of adult and fetal animals to repair articular cartilage, we investigated the early process after creating superficial defects in the femoral knee cartilage in rat models. In fetuses at 19 days of gestation, both chondrocytes and the extracellular matrix responded notably by 48 h after artificial injury. Staining patterns with safranin O revealed that, by 1 h after injury, some components of the extracellular matrix around the wound were modified, and the change spread from the limited region to the entire knee cartilage within 24 h. The chondrocytes in the area surrounding the wound transiently expressed increased level of c-fos from 1 h to 6 h. The wound remained 1 day after birth, i.e., 72 h after injury, but was completely repaired 10 days after birth. In contrast, neither visible responses nor transient c-fos expression was observed in 12-week-old adult articular cartilage 48 h after injury. We also examined the relationships between the intracellular Ca2+ concentration ([Ca2+]i) and the induction of c-fos expression in the cartilage. Applications of ATP or Ca2+ ionophore A23187, both of which increase [Ca2+]i, induced immediate expression of c-fos in primary cultured chondrocytes: 1 M ATP elicited an increase of [Ca2+]i in chondrocytes in fetal cartilage slices, but 1 mM was required in adult cartilage slices. Our findings show the presence of a signaling pathway that is apparently active in the repair of fetal but not adult articular cartilage and that involves the intercellular transfer of ATP, increase of [Ca2+]i, and expression of c-fos in cartilage.This study was supported in part by Health Sciences Research Grants for Research on Human Genome, Tissue Engineering and Food Biotechnology to M.O. from the Japanese Ministry of Health, Labor and Welfare  相似文献   

20.
Recent studies have demonstrated enhanced expression of vascular endothelial growth factor and vascular endothelial growth factor receptor (VEGFR)-1 and -2 in chondrocytes of rheumatoid and osteoarthritic cartilage. Since expression of VEGFR-3 (Flt-4) in chondrocytes has not yet been investigated, we studied the distribution of VEGFR-3 in osteoarthritic cartilage samples by immunohistochemistry and immunoelectron microscopy. Furthermore, we looked for functional colocalization of VEGFR-3 with the signal transduction receptor 1-integrin. Superficial osteoarthritic chondrocytes exhibited VEGFR-3 expression in the cytoplasm and on the cell membrane. Using western blotting we could demonstrate that interleukin-1 (IL-1) stimulates the expression of VEGFR-3 in chondrocytes in vitro in a dose-dependent manner. By coimmunoprecipitation assay we found a functional complex between the 1-integrin and VEGFR-3 in IL-1-stimulated chondrocytes indicating that activated VEGFR-3 may interact with 1-integrin and associated subcellular pathways in osteoarthritic chondrocytes. Taken together with results of previous studies showing that 1-integrins were also associated with other surface receptors and proteins in chondrocytes that cause cartilage destruction in arthritis (for example, urokinase-type plasminogen activator receptor and matrix metalloproteinases), we can hypothesize that signal transduction by these receptor complexes via 1-integrins may play a crucial role in pathogenesis of osteoarticular disorders. Further work needs to be done to elucidate downstream signaling events activated by these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号