首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Permeabilized Coleus blumei cells were cultivated in an immobilized state to study the effect of dimethyl sulfoxide (DMSO) concentrations and growth regulators on cell growth and rosmarinic acid (RA) production characteristics. Luffa (the fibrous skeleton of mature fruit of Luffa cylindrica) was a good support matrix for cell immobilization because of its high void volume. Maximum cell loading capacity was 1.33 g dry cell weight (DCW)/g dry Luffa. The experiments were done in shake flasks with no free medium. The medium was supplied in a fed-batch mode to avoid the flotation of Luffa pieces. The sucrose in the medium was completely hydrolyzed to glucose and fructose without any sugar accumulation in the medium. The cell viability was slightly higher in the cells on top of the Luffa than those in the middle. Cell growth rate and rosmarinic acid (RA) production were approximately half that obtained in cell suspension cultures. Cell yield (g DCW/g glucose) was similar to that of cell suspension cultures. The absence of growth regulators did not promote an increase of RA production but did decrease the cell mass. The second step preconditioning with 0.5% DMSO did not improve the cell's adaptability to higher DMSO concentrations and the cell mass did not increase with 2.5% DMSO.  相似文献   

2.
Changes in sugar composition (sucrose, glucose and fructose) of medium, callus, stem and leaves of in vitro proliferating explants of Actinidia deliciosa C.F. Liang, Hayward were analyzed together with explant growth at 0, 15, 30, 45 and 60 days of culturing. Autoclaving hydrolyzes a small part of the initial sucrose of the medium into glucose and fructose. In presence of Actinidia explants the initial sucrose decreased to 32% after 15 days of culturing, to 4% after 30 days and to 0.08% at the end of the culture period (60 days). Sucrose increase in the explants did not parallel with its decrease in the medium. Sucrose presence in the explants was evident only during the last month of culturing. After 15 days of culturing a large increase of glucose and fructose was found in the medium but it did not equal the hydrolyzed sucrose. The level of these two monosaccharides remained stable in the medium until the 30th day, then significantly decreased in the second month of culture; neither were completely exhausted at the end of the culture. In the whole explant the highest amount of glucose and fructose was reached after 30 days of culturing.The balance of the three sugars in the medium-explant system, as % distribution of carbon atoms, showed a utilization throughout the whole culture period.Qualitative analyses performed on medium, callus and leaves at 0, 15, and 30 days of culturing revealed the presence of glucose and fructose only and no significant amounts of other hexoses or pentoses. Starch accumulation in the leaves was also observed throughout the culturing.Paper No. 724  相似文献   

3.
Summary Sucrose, glucose, and fructose as carbon sources in culture medium were assessed in hairy root cultures ofCatharanthus roseus. The cultures preferentially consumed sucrose, resulting in about 40% (dry wt) higher growth rate. However, fructose enhanced the cathranthine yield about two-fold. The elevated yield was not seemingly ascribed to the higher osmolarity per unit weight of fructose than sucrose. A two stage culture using sucrose (1st) and fructose (2nd) improved volumetric yields of catharanthine about two-fold, i.e. 41 mg/l.  相似文献   

4.
Studies for the effects of sugar concentration on camptothecin production in suspension cultures ofCamptotheca acuminata were made with different concentrations of sucrose, glucose, and fructose. Sucrose among tested carbon sources increased the camptothecin production. The highest camptothecin, 29×104 mg/L, was obtained at 6% of sucrose that was 11 times higher than that at 2% of sucrose. Kinetics of camptothecin production with 6% of sucrose showed the camptothecin production was increased up to 3 days and then decreased after 6 days from inoculation. The highest camptothecin was obtained on the third day from inoculation.  相似文献   

5.
The primary utilization of carbohydrates by cell suspension cultures of Rudgea jasminoides, a native woody Rubiaceae from tropical forests, was investigated. Sucrose, glucose + fructose, glucose, or fructose were supplied as carbon sources. The growth curves of R. jasminoides cultured in glucose + fructose, glucose, or fructose showed similar patterns to that observed when sucrose was supplied to the cells, except that an increase in dry mass was observed at the beginning of the stationary growth phase in the media containing only one monosaccharide. The increase in hexose levels in the media during the early stages of the cultures indicated extracellular hydrolysis of sucrose, which was further supported by the increase in the activity of acid invertase bound to the cell wall. Glucose was preferentially taken up, whereas uptake of fructose was delayed until glucose was nearly depleted from the medium. Measurements of intracellular sucrose content and cytoplasmatic and vacuolar invertases indicate that the enzymatic activity seems to be correlated with a decrease in the hexose flux into the cells of R. jasminoides. Our results indicate that the behavior of cell suspension cultures of R. jasminoides regarding sugar utilization seems to be similar to other dicotyledonous undifferentiated cell suspension cultures.  相似文献   

6.
Using in vitro culture of isolated small berries of Vitis vinifera L. cv. Sultana, it was possible to study the effect of different carbon sources and sucrose concentration on fruit growth, hexose accumulation and soluble invertase activity during the first stage of berry development by eliminating the source tissue. Berries cultured in vitro lack stage III of berry development which is characterised by massive accumulation of water and sugars, and thereby berries reached only 30% of the weight of those grown in the plant. Sucrose and glucose were both good carbon sources for berry growth, while fructose was not as good. Berry growth, hexose accumulation and invertase activity increased as sucrose concentration increased up to 15% in the medium. Furthermore, the onset of hexose accumulation in cultured berries depended on the concentration of sucrose in the medium, starting earlier at higher concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
A synthetic culture medium which supports a high level of growth of a scrially propagated cell suspension culture of Acer pseudoplatanus is described. The sucrose of this medium can be effectively replaced by glucose or fructose or a mixture of glucose and fructose or galactose or maltose or soluble starch. When the carbohydrate is glucose or fructose no other sugars appear in the culture medium in significant amounts. Glucose is absorbed in greater quantity than fructose from an equimolar mixture of these sugars. When sucrose is supplied both glucose and fructose appear in the medium. Glucose appears in maltose medium, and maltose and glucose in soluble starch medium. Under the standard conditions of culture, media containing 2 % sucrose or 2 % glucose become depleted of sugar before the 25th day of incubation. Enhanced yield of the cultures can be obtained by raising the initial sucrose concentration to 6 %. – A supply of nitrate is essential for maximum yield and healthy growth. Growth, in the presence of nitrate, is significantly enhanced by a supply of urea. Addition of casein hydrolysate or of a mixture of amino acids enhances growth in the presence of nitrate and urea and particularly when nitrate is omitted. – When kinetin is omitted or incorporated at the standard level (0.25 mg/I), 2,4-dichlorophenoxyacetic acid (2,4-D) at 1.0 mg/l is essential for continuation of growth at a high level. It cannot be replaced by indol-3yl-acetic acid (IAA). 1-naphthaleneacetic acid (NAA) at 10 mg/l permits of a low level of growth with abnormal aggregation. When the level of kinetin is raised to 10 mg/l a high level of growth occurs in the absence of added auxin but the cultures become brown and tend to show increasing aggregation on subculture.  相似文献   

8.
Sucrose was found to modulate polyphenol accumulation in Vitis vinifera cell cultures. The production of anthocyanins increased 12-fold after addition of 0.15 m sucrose, while that of stilbenes was only slightly affected. Sucrose did not play a physical role because metabolic sugars were required for the induction of polyphenol accumulation. Indeed, the polyols, mannitol and sorbitol, had no effect on this accumulation. We established a model system to investigate the mechanism of sucrose regulation of polyphenol production without inhibition of grape cell growth. After addition of sucrose to the culture medium, the major sugars accumulated in grape cells were glucose and fructose, reaching 40% of the dry weight. The increase in the level of these hexoses closely coincided with the increase in anthocyanin accumulation in grape cells. Received: 18 August 1997 / Revision received: 6 November 1997 / Accepted: 5 January 1998  相似文献   

9.
Agrobacteria mediated Coleus blumei tumour tissues were cultured in vitro on MS medium. Sixteen diversified transformed callus cultures were maintained for several years in the absence of plant growth regulators and antibiotics without affecting the growth rate. Rosmarinic acid was detected spectrophotometrically in all tissue lines but in different quantities. The highest rosmarinic acid accumulation detected was 11% of dry tissue mass. The relation between culture growth and rosmarinic acid production was investigated in three callus lines. The lines showed different rosmarinic acid accumulation in relation to their growth rate; it was either parallel or inversely related to the tissue growth. The effects of certain medium constituents on the callus growth and rosmarinic acid accumulation were examined in four tumour cell lines. Addition of 4% or 5% sucrose stimulated rosmarinic acid synthesis and decreased callus growth. Nitrogen reduction to one half or one quarter of initial concentration did not affect rosmarinic acid synthesis and decreased callus growth in three lines, while it increased rosmarinic acid accumulation and callus growth in one line. Addition of 0.1 mg/l Phe stimulated rosmarinic acid production in two lines but had little effect on the rosmarinic acid level in others. Rosmarinic acid production was significantly improved on modified macronutrients, where the Ac2 line produced 16.5 mg of rosmarinic acid per tube (0.2 g of dry wt) after being in culture for 35 days.  相似文献   

10.
The influences of carbon sources, fructose, glucose, sorbitol and sucrose on shoot proliferation and in vitro rooting of cork oak (Quercus suber L.) were compared at a wide range of concentrations (1–6%, w/v). The highest number of shoots occurred on glucose-containing medium. Nevertheless, we have chosen 3% sucrose which induced a similar rate of proliferation but favoured shoot elongation, permitting an effectively higher number of shoots during transfers. Sorbitol and autoclaved fructose did not stimulate shoot proliferation. Adventitious root formation was strongly dependent on carbohydrate supply. Sorbitol and autoclaved fructose were completely ineffectively on rooting induction. Glucose was the most effective carbon source on rooting promotion followed by sucrose and filter-sterilized fructose. The rooting response induced by fructose was dependent on the sterilizing procedure. The number of adventitious roots produced per shoot increased with increasing glucose and sucrose concentration. The content of reducing sugars in leaves of proliferation cultures and in leaves and roots of rooted plantlets was more dependent on carbon concentration than on glucose or sucrose supplement. The results presented here show that carbohydrate requirements during cork oak micropropagation depend upon the phase of culture. Sucrose (3%) and glucose (4%) were the best carbon sources respectively during proliferation and rooting phases.  相似文献   

11.
Accumulation of anthraquinones in Morinda citrifolia cell suspensions   总被引:1,自引:0,他引:1  
Cell suspensions of Morinda citrifolia were cultivated in a B5-medium containing 4% sucrose as the sole carbon source and 1 mg l-1 naphthyl acetic acid (NAA) or 1 mg l-1 2,4-dichloro-phenoxyacetic acid (2,4-D). Both auxins were able to support growth but only in the presence of NAA anthraquinone production was observed. 2,4-D inhibited the production in NAA cultures. Anthraquinone synthesis took place in the growth and the stationary phase and amounts of 0.2–0.4 mmol (about 100–200 mg) g-1 dry weight could be reached.Under both growth conditions sucrose was hydrolyzed extracellularly by invertase. From the resulting monosaccharides, glucose was taken up preferentially and an appreciable uptake of fructose only took place when medium glucose was exhausted. Sugar uptake rates were similar when cells were grown in NAA and in 2,4-D medium but the intracellular sugar contents (expressed on a dry weight basis) differed considerably. The presence of sucrose, glucose and fructose was demonstrated under both growth conditions. The amounts of sucrose and glucose were much lower in the 2,4-D cells than in the NAA-cells especially during the growth phase. Fructose contents were low and comparable, while in NAA cells an unknown sugar (possibly the sugar moiety of the glycosylated anthraquinones) was observed especially at the end of the growth phase and in the stationary phase. The differences in sugar concentrations were even larger due to the lower water contents of the NAA cells.Respiration of 2,4-D cells was much higher than that of NAA cells during the growth phase. A sharp increase in sugar contents (mainly sucrose) occurred in the 2,4-D cells at the end of the growth phase and corresponded with the fall in respiratory activity.A possible correlation between the lack of production of anthraquinones in 2,4-D cells and a less efficient growth metabolism in these cells is discussed.Abbreviations AQ anthraquinones - 2,4-D 2,4-dichloro-phenoxy-acetic acid - DW dry weight - FW fresh weight - NAA naphthyl acetic acid - pCPO p-chloro-phenoxy-acetic acid  相似文献   

12.
Carrot (Daucus carota L.) cell suspension cultures grew well when provided with glucose, fructose, sucrose or raffinose. Galactose and melibiose supported less growth unless supplemented with glucose or fructose. In combination with ten different sugar mixtures, 2-deoxy-D-glucose (dGlc) inhibited culture growth. Inhibitory effects of dGlc were more marked with fructose, melibiose, raffinose or mixtures of these sugars in the culture medium. The presence of glucose or galactose reduced the inhibitory effects of dGlc on culture growth. Experiments with radioactive labelled sugars demonstrated that dGLc uptake was greater in the presence of fructose than glucose, and that growth inhibition of dGlc coincided with its uptake. Reduced protein content was also associated with the inhibitory effects of dGlc. Cultured cells contained lower levels of invertase (EC 3.2.1.26) activity during the active phase of culture growth (up to 25 days after subculture) than when growth had peaked and subsequently declined. Acid and alkaline invertase activities were not greatly reduced by exogenous hexoses. Invertase activity was greatest during periods of low protein content in all cultures and was inhibited by dGlc during the latter phases of the culture period. Free intracellular sugars throughout the culture period consisted mainly of glucose and fructose.  相似文献   

13.
Information concerning the sugar status of plant cells is of greatimportance during all stages of the plant life cycle. The aim of this work wasto study primary carbohydrate metabolism in hairy roots of red beet. Growth ofhairy roots of red beet in vitro and changes in concentration of major nutrientsand sugar in the media were measured over a growth cycle of 16 days. We havealso determined the levels of key enzymes in the pathways of sucrose metabolism.Sucrose concentration decreased as hairy root growth proceeded while no changein glucose and fructose levels in the medium was found during the first 3 daysindicating that external sucrose is preferably taken to the cell before it ishydrolyzed by extracellular invertase. The increase in glucose and fructoselevels in the media after 5 days of culture indicates extracellular hydrolysisof sucrose which was further supported by the activity of acid invertaseobserved during that time in the culture medium. The uptake of mineral nutrientsby hairy root of red beet was monitored continuously during the culture cycle.The preferential use of NH4 + overNO3 at the beginning of the culture andacidification of culture media were the two most notable results concerningnitrogen nutrition during hairy root growth of red beet.  相似文献   

14.
Whole cell extracts ofArabidopsis cell cultures maintained on various sucrose concentrations (0,3, and 6%) were analyzed by1H NMR spectroscopy to determine the comprehensive metabolic change in these cultures during sucrose starvation. The amount of sucrose, glucose, and fructose in the cells decreased to almost nothing after 12 h of culture in medium without sucrose. In contrast, the total free amino acid content of the cells increased as the culture proceeded. Among the free amino acids, phenylalanine and malic acid increased the most, followed by asparagine and alanine, whereas glutamic acid did not change significantly. These results are in agreement with previous studies using HPLC.1H NMR spectroscopy enabled measurement of changes in the sugar and free amino acid content of whole cell extracts without fractionation and complicated sample preparation. These results indicate that comprehensive metabolic changes in the cells can be determined by a simple, rapid method using whole cell extracts and1H NMR spectroscopy.  相似文献   

15.
Red beet hairy root cultures, obtained after genetic transformation with Agrobacterium rhizogenes, are completely heterotrophic and synthesize betalaines (BNs). Upon subjecting the hairy roots to treatments containing different sugars (3% w/v) it was found that sucrose was rapidly utilized, followed by maltose, and a very limited use of glucose, but the other hexoses – fructose, lactose, xylose and galactose or glycerol totally suppressed both growth and BN synthesis. No habituation or adaptability to maltose or glucose occurred, evidenced by the lack of growth upon re-culture in respective medium. Glycerol, was not taken up alone, but was utilized to a considerable extent in the presence of low levels of sucrose for growth only but not BN synthesis. Red beet hairy root culture did not exogenously hydrolyse sucrose to hexoses, as there were only traces of reducing sugar present in the medium soon after inoculation, without an increase later, confirmed by HPLC. There was an increase in medium osmolarity in the presence of fructose indicating the exudation of certain compounds from the roots. Red beet hairy roots appear useful as a model system to study sugar metabolism/signalling due to their sensitivity to different sugars that may directly link to morphological changes and BN synthesis.  相似文献   

16.
Uptake of sugar by Phaseolus vulgaris cell suspension cultures from a sucrose supplemented medium is predominantly in the hexose form. This is due to a rapid cleavage of the sucrose by an apoplastic acid invertase activity and an apparent very low demand for and uptake of carbon from the medium prior to induction of cell growth and division. Glucose is preferentially taken up, leading to an accumulation of fructose in the medium. However, when the glucose is depleted the cells do take up the fructose at a rate similar to that of glucose. When glucose or fructose is supplied individually to cell cultures, both are utilised very efficiently with growth slightly better on the fructose medium. Hexose uptake is largely an active process with diffusion uptake even at the highest concentrations (> 50 m M ) contributing less than 30%. The hexose uptake system of the cells has a greater affinity for glucose (Km= 240 µ M ) than for fructose (Km= 960 µ M ) but the maximum uptake (Vmax) is similar. The major difference in the kinetic properties of hexose uptake is that glucose is a strong inhibitor of fructose uptake, while fructose has little effect on glucose uptake. The differences in the kinetic properties of the uptake system for the two hexoses can largely explain the observed pattern of hexose utilisation when both glucose and fructose are present in the medium.  相似文献   

17.
Summary Under otherwise identical fermentation conditions, the sugar source has been shown to have a marked effect on citric acid production by Aspergillus niger. Sucrose was the most favourable source, followed by glucose and fructose and then lactose. No citric acid was produced from galactose. Strong relationships were observed between citric acid production and the activities of certain enzymes in myccelial cell-free extracts prepared from fermentation samples. When sucrose, glucose, or fructose was the sugar source pyruvate carboxylase activity was high, but 2-oxoglutarate dehydrogenase activity was not detected. When galactose was the sugar source pyruvate carboxylase activity was low, but 2-oxoglutarate dehydrogenase activity was high. It is suggested that whereas glucose and fructose repress 2-oxoglutarate dehydrogenase, thereby causing accumulation of citric acid, galactose does not. The activity of aconitase showed a direct relationship to the citric acid production rate. Thus, the activity was highest when sucrose was the sugar source, and lowest when galactose was the source. It is suggested that when large amounts of citric acid are lost from the cell the activity of aconitase increases as a response to the diminished intracellular supply of its substrate.  相似文献   

18.
Rosmarinic acid production by Lavandula vera MM cell-suspension culture   总被引:1,自引:0,他引:1  
The time courses of growth and rosmarinic acid production by Lavandula vera MM cell suspension were investigated. The uptake of the main nutrients (sucrose, nitrogen, phosphorus, K, Ca, Mg) was followed during cultivation and the data on the physiology of the L. vera MM cell culture are presented. It was established that the cell culture synthesizes rosmarinic acid during the linear phase of growth for a relatively short period (between the 4th and 8th days of cultivation). The influence of sucrose concentration in the nutrient medium on cell growth and accumulation of rosmarinic acid by L. vera MM cell culture was investigated. The results showed that 7% sucrose in the nutrient medium ensured a steady growth of the cell suspension and increased the yield of rosmarinic acid (29.2 g/l dry biomass and 507.5 mg/l rosmarinic acid compared to 13.0 g/l dry biomass and 68.6 mg/l rosmarinic acid for the control cultivation with 3% sucrose). Received: 17 September 1996 / Received revision: 31 January 1997 / Accepted: 1 February 1997  相似文献   

19.
Batch culture kinetics of the red yeast, Xanthophyllomyces dendrorhous SKKU 0107, revealed reduction in biomass with glucose and lower intracellular carotenoid content with fructose. Figures were different when compared to sucrose, which is a disaccharide of glucose and fructose. In contrast, specific growth rate constant stayed between 0.094~0.098 h−1, irrespective of the carbon sources employed. Although the uptake rate of glucose was found to be 2.9-fold faster than that of fructose, sucrose was found to be a more suitable carbon source for the production of carotenoids by the studied strain. When sugar cane molasses was used, both the specific growth rate constant and the intracellular carotenoid content decreased by 27 and 17%, respectively. Compared with the batch culture using 28 g/L sugar cane molasses, fed-batch culture with the same strain resulted in a 1.45-fold higher cell yield together with a similar level of carotenoid content in X. dendrorhous SKKU 0107.  相似文献   

20.
The effect of inoculum size, carbon sources (fructose, glucose, maltose, sucrose), nitrate and ammonia on solasodine production by Solanum eleagnifolium Cav. was studied. The specific growth rate was estimated to be 0.15–0.20 d-1 with all sugars tested at a concentration of 90 mM. Sucrose (180 mM) produced the highest biomass value (about 2.8 mg DW ml-1) while the lowest one was produced by maltose. Although solasodine productivity values after 11 days of culture were similar for all sugars tested, the maximum values of productivity (0.9 mg g-1 d-1) were achieved after 6 days of culture with sucrose (180 mM). Solasodine productivity of cultures conducted with a large inoculum (20% w/v fresh material) was double that with a small inoculum (10% w/v fresh material).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号