首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage–induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G2/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G2/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage–induced recombinants in G2/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.  相似文献   

2.
Deletion mutants of CHL1 or CTF4, which are required for sister chromatid cohesion, showed higher sensitivity to the DNA damaging agents methyl methanesulfonate (MMS), hydroxyurea (HU), phleomycin, and camptothecin, similar to the phenotype of mutants of RAD52, which is essential for recombination repair. The levels of Chl1 and Ctf4 associated with chromatin increased considerably after exposure of the cells to MMS and phleomycin. Although the activation of DNA damage checkpoint did not affected in chl1 and ctf4 mutants, the repair of damaged chromosome was inefficient, suggesting that Chl1 and Ctf4 act in DNA repair. In addition, MMS-induced sister chromatid recombination in haploid cells, and, more importantly, MMS-induced recombination between homologous chromosomes in diploid cells were impaired in these mutants. Our results suggest that Chl1 and Ctf4 are directly involved in homologous recombination repair rather than acting indirectly via the establishment of sister chromatid cohesion.  相似文献   

3.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   

4.
Sister chromatids are often arranged as incompletely aligned entities in interphase nuclei of Arabidopsis thaliana. The STRUCTURAL MAINTENANCE OF CHROMOSOMES (SMC) 5/6 complex, together with cohesin, is involved in double-strand break (DSB) repair by sister chromatid recombination in yeasts and mammals. Here, we analyzed the function of genes in Arabidopsis. The wild-type allele of SMC5 is essential for seed development. Each of the two SMC6 homologs of Arabidopsis is required for efficient repair of DNA breakage via intermolecular homologous recombination in somatic cells. Alignment of sister chromatids is enhanced transiently after X-irradiation (and mitomycin C treatment) in wild-type nuclei. In the smc5/6 mutants, the x-ray–mediated increase in sister chromatid alignment is much lower and delayed. The reduced S phase–established cohesion caused by a knockout mutation in one of the α-kleisin genes, SYN1, also perturbed enhancement of sister chromatid alignment after irradiation, suggesting that the S phase–established cohesion is a prerequisite for correct DSB-dependent cohesion. The radiation-sensitive51 mutant, deficient in heteroduplex formation during DSB repair, showed wild-type frequencies of sister chromatid alignment after X-irradiation, implying that the irradiation-mediated increase in sister chromatid alignment is a prerequisite for, rather than a consequence of, DNA strand exchange between sister chromatids. Our results suggest that the SMC5/6 complex promotes sister chromatid cohesion after DNA breakage and facilitates homologous recombination between sister chromatids.  相似文献   

5.
Mutations in the ELG1 gene of yeast lead to genomic instability, manifested in high levels of genetic recombination, chromosome loss, and gross chromosomal rearrangements. Elg1 shows similarity to the large subunit of the Replication Factor C clamp loader, and forms a RFC-like (RLC) complex in conjunction with the 4 small RFC subunits. Two additional RLCs exist in yeast: in one of them the large subunit is Ctf18, and in the other, Rad24. Ctf18 has been characterized as the RLC that functions in sister chromatid cohesion. Here we present evidence that the Elg1 RLC (but not Rad24) also plays an important role in this process. A genetic screen identified the cohesin subunit Mcd1/Scc1 and its loader Scc2 as suppressors of the synthetic lethality between elg1 and ctf4. We describe genetic interactions between ELG1 and genes encoding cohesin subunits and their accessory proteins. We also show that defects in Elg1 lead to higher precocious sister chromatid separation, and that Ctf18 and Elg1 affect cohesion via a joint pathway. Finally, we localize both Ctf18 and Elg1 to chromatin and show that Elg1 plays a role in the recruitment of Ctf18. Our results suggest that Elg1, Ctf4, and Ctf18 may coordinate the relative movement of the replication fork with respect to the cohesin ring.  相似文献   

6.
Marie E. Maradeo 《FEBS letters》2010,584(18):4037-4040
Ctf7/Eco1-dependent acetylation of Smc3 is essential for sister chromatid cohesion. Here, we use epitope tag-induced lethality in cells diminished for Ctf7/Eco1 activity to map cohesin architecture in vivo. Tagging either Smc1 or Mcd1/Scc1, but not Scc3/Irr1, appears to abolish access to Smc3 in ctf7/eco1 mutant cells, suggesting that Smc1 and Smc3 head domains are in direct contact with each other and also with Mcd1/Scc1. Thus, cohesin complexes may be much more compact than commonly portrayed. We further demonstrate that mutation in ELG1 or RFC5 anti-establishment genes suppress tag-induced lethality, consistent with the notion that the replication fork regulates Ctf7/Eco1.  相似文献   

7.
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.  相似文献   

8.
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.  相似文献   

9.
The budding yeast INO80 complex has a role in remodeling chromatin structure, and the SWR1 complex replaces a H2A/H2B dimer with a variant dimer, H2A.Z (Htz1)/H2B. It has been reported that these chromatin remodeling complexes contain Arp4 (actin-related protein) and actin in common and are recruited to HO endonuclease-induced DNA double-strand break (DSB) site. Reportedly, Ino80 can evict nucleosomes surrounding a HO-induced DSB; however, it has no apparent role to play in the repair of HO-induced DSB. Here we show that an essential factor for INO80 chromatin remodeling activity, Arp8, is involved in damage-induced sister chromatid recombination and interchromosomal recombination between heteroalleles. In contrast, arp6 mutants are proficient for recombination, indicating that the SWR1 complex does not promote recombination. Our data suggest that the remodeling of chromatin by the INO80 complex facilitates efficient homologous recombination upon DNA damages.  相似文献   

10.
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.  相似文献   

11.
Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.  相似文献   

12.
The cohesion of sister chromatids is mediated by cohesin, a protein complex containing members of the structural maintenance of chromosome (Smc) family. How cohesins tether sister chromatids is not yet understood. Here, we mutate SMC1, the gene encoding a cohesin subunit of budding yeast, by random insertion dominant negative mutagenesis to generate alleles that are highly informative for cohesin assembly and function. Cohesins mutated in the Hinge or Loop1 regions of Smc1 bind chromatin by a mechanism similar to wild-type cohesin, but fail to enrich at cohesin-associated regions (CARs) and pericentric regions. Hence, the Hinge and Loop1 regions of Smc1 are essential for the specific chromatin binding of cohesin. This specific binding and a subsequent Ctf7/Eco1-dependent step are both required for the establishment of cohesion. We propose that a cohesin or cohesin oligomer tethers the sister chromatids through two chromatin-binding events that are regulated spatially by CAR binding and temporally by Ctf7 activation, to ensure cohesins crosslink only sister chromatids.  相似文献   

13.
Here we identify a defect in sister chromatid cohesion in the Saccharomyces serevisiae arp8 mutant, which impairs the chromatin remodeling activity of the INO80 complex, and we report the direct association of Ino80 with centromeres and cohesin-associated regions. In early S phase, Ino80 is recruited to replication forks along with Ctf18 and PCNA, both of which are involved in the establishment of sister chromatid cohesion. The arp8 mutation perturbs the association of Ctf18 and PCNA but not of cohesin with replication forks. We propose that the INO80 complex is required for the proper establishment of sister chromatid cohesion.  相似文献   

14.
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.  相似文献   

15.
Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromosomes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is unclear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with regard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G2-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohesin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle-specific damage site accumulation is not a prerequisite for cohesin''s intra-S checkpoint function. Our findings reveal the unique ways in which cohesin-SA1 and cohesin-SA2 participate in the DNA damage response, coordinately protecting genome integrity in human cells.  相似文献   

16.
Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, the eukaryotic cell has evolved mechanisms to favor equal sister chromatid exchange (SCE) and suppress unequal SCE, single-strand annealing and break-induced replication. In the budding yeast Saccharomyces cerevisiae, the tight regulation of homologous recombination at the rDNA locus is dependent on the Smc5–Smc6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus of this review is the regulation of recombinational DNA repair at the rDNA locus by sumoylation and the Smc5–Smc6 complex in S. cerevisiae.  相似文献   

17.
The genomic integrity of a eukaryotic cell is challenged by over 10,000 chromosomal lesions perday. Therefore the cell has evolved efficient mechanisms to recognize, signal, and repair DNAbreaks. Defects in any of these steps can lead to chromosomal aberrations and cancers. As theselesions must be repaired in the context of chromatin, both chromatin-modifying and nucleosomeremodelingenzymes have been implicated in DNA damage repair. We reported recently that theRSC and Swi/Snf ATP-dependent chromatin-remodeling complexes are involved in DSB repairspecifically by homologous recombination. Here we discuss how such enzymes might be recruitedto DNA breaks, why so many remodelers are recruited to sites of DSBs, and a possible functionalconnection between RSC’s roles in sister chromatid cohesion and DSB repair.  相似文献   

18.
Cohesin establishes sister-chromatid cohesion during S phase to ensure proper chromosome segregation in mitosis. It also facilitates postreplicative homologous recombination repair of DNA double-strand breaks by promoting local pairing of damaged and intact sister chromatids. In G2 phase, cohesin that is not bound to chromatin is inactivated, but its reactivation can occur in response to DNA damage. Recent papers by Koshland's and Sj?gren's groups describe the critical role of the known cohesin cofactor Eco1 (Ctf7) and ATR checkpoint kinase in damage-induced reactivation of cohesin, revealing an intricate mechanism that regulates sister-chromatid pairing to maintain genome integrity.  相似文献   

19.
We have identified and characterized an alternative RFC complex RFC(Ctf18p, Ctf8p, Dcc1p) that is required for sister chromatid cohesion and faithful chromosome transmission. Ctf18p, Ctf8p, and Dcc1p interact physically in a complex with Rfc2p, Rfc3p, Rfc4p, and Rfc5p but not with Rfc1p or Rad24p. Deletion of CTF18, CTF8, or DCC1 singly or in combination (ctf18Deltactf8Deltadcc1Delta) leads to sensitivity to microtubule depolymerizing drugs and a severe sister chromatid cohesion defect. Furthermore, temperature-sensitive mutations in RFC4 result in precocious sister chromatid separation. Our results highlight a novel function of the RFC proteins and support a model in which sister chromatid cohesion is established at the replication fork via a polymerase switching mechanism and a replication-coupled remodeling of chromatin.  相似文献   

20.
Rings, bracelet or snaps: fashionable alternatives for Smc complexes   总被引:9,自引:0,他引:9  
The mechanism of higher order chromosome organization has eluded researchers for over 100 years. A breakthrough occurred with the discovery of multi-subunit protein complexes that contain a core of two molecules from the structural maintenance of chromosome (Smc) family. Smc complexes are important structural components of chromosome organization in diverse aspects of DNA metabolism, including sister chromatid cohesion, condensation, global gene repression, DNA repair and homologous recombination. In these different processes, Smc complexes may facilitate chromosome organization by tethering together two parts of the same or different chromatin strands. The mechanism of tethering by Smc complexes remains to be elucidated, but a number of intriguing topological alternatives are suggested by the unusual structural features of Smc complexes, including their large coiled-coil domains and ATPase activities. Distinguishing between these possibilities will require innovative new approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号