首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In Gram negative bacteria, fluoroquinolone resistance is acquired by target mutations in topoisomerase genes or by reducing the permeation of drugs due to the increase in expression of endogenous multidrug efflux pumps that expel structurally unrelated antimicrobial agents. An ongoing challenge is searching for new inhibitory substances in order to block efflux pumps and restore the antibiotic drugs susceptibility. In this research, we sought to investigate the interplay between ciprofloxacin and an efflux pump inhibitor (EPI), phenyl alanine arginyl β-naphtylamide (PAβN), to determine the prevalence of efflux pump overexpression in clinical isolates of Pseudomonas aeruginosa. Ciprofloxacin was tested at different concentrations (256–0.25 μg/ml) with a fixed concentration of PAβN (50 μg/ml). The isolates susceptibility profiles were analyzed by disc diffusion and agar dilution methods using 10 antibiotic discs and 4 powders. It was found that in the presence of PAβN, resistance to ciprofloxacin was inhibited obviously and MIC values were decreased. The comparison between subgroups of P. aeruginosa isolates with different resistance profiles indicates that efflux pump overexpression (EPO) is present in 35% of ciprofloxacin resistant isolates with no cross resistance and in variable frequencies among isolates showing cross resistance to other tested antibiotics: gentamicin (31%), ceftazidime (29%), and imipenem (18%). Altogether, these results imply that PAβN maybe effective to restore the fluoroquinolone drugs susceptibility in clinical treatment procedures. Results also show that increased use of a fluoroquinolone drug such as ciprofloxacin can affect the susceptibility of P. aeruginosa to other different antipseudomonal agents.  相似文献   

2.
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1·0 mg l−1 ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of ≥8 mg l−1. The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.  相似文献   

3.
Li L  Li Z  Guo N  Jin J  Du R  Liang J  Wu X  Wang X  Liu M  Jin Q  Yu L 《Letters in applied microbiology》2011,52(4):372-378
Aims: To evaluate the interaction of 1‐(1‐naphthylmethyl)‐piperazine (NMP) and ciprofloxacin (CPFX) in vitro against fluoroquinolone (FQ)‐resistant clinical isolates of methicillin‐resistant Staphylococcus aureus (MRSA). Methods and Results: The in vitro interaction of NMP and CPFX in 12 FQ‐resistant clinical isolates of MRSA was assessed using a checkerboard microdilution method. In the study, a synergistic antimicrobial effect between NMP and CPFX was observed in all 12 FQ‐resistant strains tested, as determined by the fractional inhibitory concentration index (FICI), and in 10 strains using ΔE models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed using the time–killing test and agar diffusion assay for the selected strain, MRSA 1862; synergistic activity was observed when NMP was combined with the first‐line antimicrobial agent CPFX against Staph. aureus. Conclusions: Synergistic activity between NMP and CPFX against clinical isolates of FQ‐resistant Staph. aureus was observed in vitro. Significance and Impact of the Study: This report might provide alternative methods to reduce the resistance of Staph. aureus to CPFX.  相似文献   

4.
Aims:  To isolate environmental bacteria capable of transforming fluoroquinolones to inactive molecules.
Methods and Results:  Bacteria were isolated from the aerobic liquor of a wastewater treatment plant on a medium containing norfloxacin (100 mg l−1). Twenty-two isolates were highly resistant (minimal inhibitory concentration: 6·25−200 μg ml−1) to five fluoroquinolones and six of them were positive by PCR amplification for the aminoglycoside resistance gene aac(6')-Ib. Of these, only Escherichia coli strain LR09 had the ciprofloxacin-acetylating variant gene aac(6')-Ib-cr ; HPLC and mass spectrometry showed that this strain transformed both ciprofloxacin and norfloxacin by N -acetylation. This bacterium also had mutations in the quinolone-resistance determining regions of the gyrA and parC genes.
Conclusions:  An E. coli isolate from wastewater, which possessed at least two distinct fluoroquinolone resistance mechanisms, inactivated ciprofloxacin and norfloxacin by N -acetylation.
Significance and Impact of the Study:  This is the first report of N -acetylation of fluoroquinolones by an aac(6')-Ib-cr -containing bacterium from an environmental source.  相似文献   

5.
New fluoroquinolones (FQ) may possibly be used as alternative therapeutic options for Staphylococcus aureus infections. Our objectives were: (1) to define the in vitro activities of seven FQs in a collection of 434 methicillin-susceptible and 457 methicillin-resistant S. aureus from 23 European university hospitals; (2) to characterise the prevalence of mutations in the grlA and gyrA genes in all ciprofloxacin-resistant (n=433) isolates of S. aureus; (3) to determine the percentage of ciprofloxacin-resistant S. aureus strains with measurable quinolone efflux. Methods: (1) The in vitro activities of different FQs were determined by microdilution tests. (2) PCR-amplified DNA was sequenced. (3) Ciprofloxacin minimum inhibitory concentrations (MIC) were determined in the presence and absence of reserpine, which inhibits efflux pumps. Results: (1) Irrespective of the methicillin resistance of the isolates, sitafloxacin and clinafloxacin showed the best in vitro activities. (2) All ciprofloxacin-resistant isolates exhibited GrlA alterations, namely Ser-80-->Phe or Tyr or Glu-84-->Lys or Ala-116-->Glu or Pro or a combination of Ser-80-->Phe and Glu-84-->Val. These alterations in GrlA were combined with alterations in GyrA, namely Ser-84-->Leu or Lys or Glu-88-->Lys or Val. (3) Reserpine reduced ciprofloxacin MIC values in ca. 30% of the clinical isolates tested. Conclusions: (1) This current European overview of mutations involved in FQ resistance demonstrates that only a limited number of classical mutations in grlA and gyrA contributed to resistance in clinical isolates. (2) An efflux pump is involved in ca. 30% of ciprofloxacin-resistant S. aureus isolates. (3) Sitafloxacin and clinafloxacin are two very promising new FQs with good anti-staphylococcal activity. New FQs, perhaps in combination with efflux pump inhibitors, might play a role in the treatment of S. aureus infections.  相似文献   

6.
In presented study we have characterized phenotype of clinical E. faecalis strains, fluoroquinolone susceptibility and the presence of two potential virulence factors--hemolysin/cytolysin and gelatinase. Eighty three of E. faecalis strains were isolated from clinical samples from patients of five Warsaw hospitals. Susceptibility to 18 antibiotics was assessed by the disk diffusion method (ace. NCCLS). The MIC of ciprofloxacin was determineted by agar dilution method and the MIC of sparfloxacin and moxifloxacin by the E-test (AB BIODISK). Hemolysin production was evaluated on Columbia agar medium supplemented with 5% horse blood. Gelatinase production was determinated by using two different methods: I - on the Todd-Hewitt agar containing gelatin (30 g/l) and II--on the trypticase soy agar supplemented with 1,5% skim milk. Fourty nine (59%) of the 83 isolates E. faecalis were ciprofloxacin resistant and 14 (16,9%) were ciprofloxacin intermediate. The majority of E. faecalis strains (57,8%) were higly resistant to ciprofloxacin (MIC > or = 32 microg/ml). All of ciprofloxacin resistant E. faecalis isolates were cross-resistant to the other fluoroquinolones, as well. Production of hemolysin was more frequent among ciprofloxacin resistant E. faecalis strains. The dependence between gelatinase production and fluoroquinolone:resistance was not observed. Both investigated methods of gelatinase activity detection gave the same results and can be used exchangeably. Hemolytic strains were more frequently isolated from urine (47,8%), however gelatinase producing strains were more frequently isolated from wounds (31,6%).  相似文献   

7.
Eleven multidrug-resistant Escherichia coli isolates (comprising 6 porcine and 5 bovine field isolates) displaying fluoroquinolone (FQ) resistance were selected from a collection obtained from the University Veterinary Hospital (Dublin, Ireland). MICs of nalidixic acid and ciprofloxacin were determined by Etest. All showed MICs of nalidixic acid of >256 μg/ml and MICs of ciprofloxacin ranging from 4 to >32 μg/ml. DNA sequencing was used to identify mutations within the quinolone resistance-determining regions of target genes, and quantitative real-time PCR (qRT-PCR) was used to evaluate the expression of the major porin, OmpF, and component genes of the AcrAB-TolC efflux pump and its associated regulatory loci. Decreased MIC values to nalidixic acid and/or ciprofloxacin were observed in the presence of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) in some but not all isolates. Several mutations were identified in genes coding for quinolone target enzymes (3 to 5 mutations per strain). All isolates harbored GyrA amino acid substitutions at positions 83 and 87. Novel GyrA (Asp87 → Ala), ParC (Ser80 → Trp), and ParE (Glu460 → Val) substitutions were observed. The efflux activity of these isolates was evaluated using a semiautomated ethidium bromide (EB) uptake assay. Compared to wild-type E. coli K-12 AG100, isolates accumulated less EB, and in the presence of PAβN the accumulation of EB increased. Upregulation of the acrB gene, encoding the pump component of the AcrAB-TolC efflux pump, was observed in 5 of 11 isolates, while 10 isolates showed decreased expression of OmpF. This study identified multiple mechanisms that likely contribute to resistance to quinolone-based drugs in the field isolates studied.  相似文献   

8.
Background:  Fluoroquinolone-containing therapy is effective in eradicating Helicobacter pylori . However, the resistance rate of H. pylori to fluoroquinolones in Taiwan has not yet been reported. In this study, we aimed to investigate the susceptibility to antibiotics commonly used in eradication schedules and fluoroquinolones in H. pylori .
Methods:  A total of 210 clinical isolates of H. pylori were collected from April 1998 to September 2007 from patients in southern Taiwan. The in vitro activities of six antimicrobial agents were determined by the agar dilution method and Etest. The mutations in quinolone resistance-determining regions of gyrA and gyrB were investigated by direct sequencing.
Results:  Overall, 5.7% of the isolates were resistant to ciprofloxacin and levofloxacin. The resistance rate to amoxicillin, clarithromycin, metronidazole, and tetracycline was 1.0% (two of 210), 9.5% (20 of 210), 27.6% (58 of 210), and 0.5% (one of 210), respectively. The resistance rate to either ciprofloxacin or to levofloxacin increased from 2.8% (1998–2003) to 11.8% (2004–2007). The mutations in gyrA at N87 or D91 had an impact on primary fluoroquinolone resistance in H. pylori . Garenoxacin, but not moxifloxacin, had a good in vitro inhibitory effect against ciprofloxacin/levofloxacin-resistant strains compared with objective minimal inhibitory concentration values.
Conclusions:  Drug resistance to ciprofloxacin and levofloxacin in H. pylori collected from 2004 to 2007 increased significantly compared with resistance level observed during 1998–2003. The continuous surveillance of quinolone resistance among H. pylori is important in this area.  相似文献   

9.
主动外排机制在鲍曼不动杆菌耐药性中的作用   总被引:2,自引:0,他引:2  
目的探讨细菌主动外排机制在临床分离的鲍曼不动杆菌耐药性中的作用。方法琼脂稀释法检测临床分离的鲍曼不动杆菌对常用抗生素的耐药性,测定经外排泵抑制剂碳酰氰基-对-氯苯腙(CCCP)处理前后鲍曼不动杆菌对抗生素最小抑菌浓度(MIC)的变化,以聚合酶链反应(PCR)、逆转录-聚合酶链反应(RT-PCR)检测多重耐药主动外排基因以出及其表达水平。结果临床分离的鲍曼不动杆菌对常用抗生素耐药率高且具有多重耐药性,并存在药物的主动外排。所有临床分离的菌株均能检测到adeB基因,但多重耐药株表达水平明显高于敏感株(P〈0.01)。结论临床分离的鲍曼不动杆菌的耐药性尤其是多重耐药性与外排泵介导的耐药机制密切相关。  相似文献   

10.
Aims:  To determine the antimicrobial resistant profiles and clonality of Campylobacter coli isolated from clinically ill humans and retail meats.
Methods and Results:  A total of 98 C. coli isolates (20 from humans and 78 from retail meats) were phenotypically characterized. Antimicrobial susceptibility testing was done using agar dilution method for ciprofloxacin, gentamicin, erythromycin and doxycycline. Seventy C. coli isolates including humans ( n  = 20) and retail meats ( n  = 50) were genotyped by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Resistance to ciprofloxacin was found in 29% and 15% of isolates from retail meats and humans. We observed 61 PFGE profiles using two enzymes ( Sma I, Kpn I) with an Index of discrimination of 0·99, whereas MLST generated 37 sequence types. Two clonal complexes were identified with 58 (82%) C. coli isolates clustered in the ST-828 complex.
Conclusions:  Resistance to ciprofloxacin and erythromycin was identified in C. coli obtained from retail meats and ill humans. PFGE typing of C. coli isolates was more discriminatory than MLST. Grouping of C. coli isolates (82%) by MLST in ST-828 clonal complex indicates a common ancestry.
Significance and Impact of the Study:  A high frequency of resistance found to ciprofloxacin and erythromycin is concerning from food safety perspective. PFGE using single or double restriction enzymes was found to be more discriminatory than MLST for genotyping C. coli . Overall, the C. coli populations recovered from humans and retail meats were genotypically diverse.  相似文献   

11.
Streptococcus uberis is an environmental bovine mastitis pathogen capable of UV-inducible SOS mutagenesis. Bacterial SOS systems can be induced by several chemicals including also antibiotics used in clinical practice. Here, we have studied the effect of ciprofloxacin, a fluoroquinolone antibiotic and known inducer of SOS, on mutations leading to antibiotic resistance in S. uberis . Mutation frequencies and spectra were compared in a wild-type S. uberis strain and its Δ umuC derivative. The results revealed that concentrations of ciprofloxacin corresponding to 0.3–0.5× minimum inhibitory concentration (MIC) induce mutagenesis independent of UmuC. Partial sequencing of the rpoB gene of individual rifampin-resistant clones from wild-type and Δ umuC strains revealed a similar but complex pattern of point mutations including transitions, transversions and deletions/insertions. It was previously shown that UV induces mainly transition-type mutations and UmuC is essential for the process. Thus, the results presented here demonstrate that S. uberis employs distinct mechanisms for ciprofloxacin and UV-induced mutagenesis, which is a striking difference to Escherichia coli SOS model.  相似文献   

12.
Resistance of 14 clinical isolates of C. trachomatis to fluoroquinolones, i.e. of ciprofloxacin, pefloxaxin and ofloxacin, was assayed. Three isolates with a high resistance degree to all 3 drugs (MIC equal or above 64 microg/ml) were detected. MIC was found to be equal to or below 4 microg/ml for 3 isolates. The remaining isolates had an intermediate resistance level. The nucleotide sequence was established for the Quinolone-Resistance Determining Region (QRDR) genes coding the DNA-gyrase subunit A (gyrA) and DNA-topoisomerase IV subunit C (parC) as well as for the 3'-region of ygeD coding, presumably, the efflux protein. In none of the isolates, the gyrA and gyrC QRDR differed from the corresponding regions in the published C. trachomatis genome sequence. Several silent mutations and mutations resulting in amino acid substitutions were observed in the ygeD 3' region of 2 isolates resistant to high FQ concentrations and in 1 isolate with the intermediate resistance level.  相似文献   

13.

Background

The study seeks to understand the role of efflux pumps in multidrug resistance displayed by the clinical isolates of Vibrio fluvialis, a pathogen known to cause cholera-like diarrhoea.

Methodology

Two putative MATE family efflux pumps (H- and D-type) were PCR amplified from clinical isolates of V. fluvialis obtained from Kolkata, India, in 2006 and sequenced. Bioinformatic analysis of these proteins was done to predict protein structures. Subsequently, the genes were cloned and expressed in a drug hypersusceptible Escherichia coli strain KAM32 using the vector pBR322. The recombinant clones were tested for the functionality of the efflux pump proteins by MIC determination and drug transport assays using fluorimeter.

Results

The sequences of the genes were found to be around 99% identical to their counterparts in V. cholerae. Protein structure predicting servers TMHMM and I-TASSER depicted ten-twelve membrane helical structures for both type of pumps. Real time PCR showed that these genes were expressed in the native V. fluvialis isolates. In the drug transport assays, the V. fluvialis clinical isolates as well as recombinant E. coli harbouring the efflux pump genes showed the energy-dependent and sodium ion-dependent drug transport activity. KAM32 cells harbouring the recombinant plasmids showed elevated MIC to the fluoroquinolones, norfloxacin and ciprofloxacin but H-type pumps VCH and VFH from V. cholerae and V. fluvialis respectively, showed decreased MIC to aminoglycosides like gentamicin, kanamycin and streptomycin. Decrease in MIC was also observed for acriflavin, ethidium bromide, safranin and nalidixic acid.

Significance

Increased resistance towards fluoroquinolones exhibited due to these efflux pumps from multidrug resistant clinical isolates of V. fluvialis implies that treatment procedure may become more elaborate for this simple but highly infectious disease. To the best of our knowledge, this is the first report of cloning and characterization of efflux pumps from multidrug resistant clinical isolates of V. fluvialis.  相似文献   

14.
The aim of this study was to investigate the activity of new quinolones against clinical isolates of E. coli, obtained from hospitalized patients between 1999-2000, in Eastern Romania. We tested 411 strains, isolated from urine. Susceptibility of the isolates to norfloxacin, ciprofloxacin, nalidixic acid and ofloxacin was performed using the dilution method in Mueller-Hinton agar. Susceptibility was reported using the NCCLS breakpoints. Minimum inhibitory concentration (MIC) was defined as the lowest concentration of antimicrobials that inhibited growth of the bacteria. Based on MIC breakpoints for defining susceptibility, between 12.4-13.7% of isolates were resistant to modern quinolones. Resistance to nalidixic acid significantly diminished the clinical use: level of the susceptible strains was only 12.9%.  相似文献   

15.
Sun Y  Dai M  Hao H  Wang Y  Huang L  Almofti YA  Liu Z  Yuan Z 《PloS one》2011,6(8):e23471
Active efflux pump is a primary fluoroquinolone resistant mechanism of clinical isolates of Salmonella enterica serovar Typhimurium. RamA is an essential element in producing multidrug resistant (MDR) S. enterica serovar Typhimurium. The aim of the present study was to elucidate the roles of RamA on the development of ciprofloxacin, the first choice for the treatment of salmonellosis, resistance in S. enterica serovar Typhimurium. Spontaneous mutants were selected via several passages of S. enterica serovar Typhimurium CVCC541 susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin (CIP). Accumulation of ciprofloxacin was tested by the modified fluorometric method. The expression levels of MDR efflux pumps were determined by real time RT-PCR. In ST and its spontaneous mutants, the ramA gene was inactivated by insertion of the kan gene and compensated on a recombinant plasmid pGEXΦ(gst-ramA). The mutant prevention concentration (MPC) and mutant frequencies of ciprofloxacin against ST and a spontaneous mutant in the presence, absence and overexpression of RamA were tested. Four spontaneous mutants (SI1-SI4) were obtained. The SI1 (CIP MICs, 0.1 mg/L) without any target site mutation in its quinolone resistant determining regions (QRDRs) and SI3 (CIP MICs, 16 mg/L) harboring the Ser83→Phe mutation in its QRDR of GyrA strains exhibited reduced susceptibility and resistance to multidrugs, respectively. In SI1, RamA was the main factor that controlled the susceptibility to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB. In SI3, RamA played predominant role in ciprofloxacin resistance via increasing the expression level of acrAB. Likewise, the deficiency of RamA decreased the MPCs and mutant frequencies of ST and SI2 to ciprofloxacin. In conclusion, the expression of RamA promoted the development of ciprofloxacin resistant mutants of S. enterica serovar Typhimurium. The inhibition of RamA could decrease the appearance of the ciprofloxacin resistant mutants.  相似文献   

16.
In this study, potential mechanisms underlying resistance and adaptation to benzalkonium chloride (BC) in Listeria monocytogenes were investigated. Two groups of strains were studied. The first group consisted of strains naturally sensitive to BC which could be adapted to BC. The second group consisted of naturally resistant strains. For all adapted isolates, there was a correlation between the resistance to BC and ethidium bromide, but this was not the case for the naturally resistant isolates. To investigate the role of efflux pumps in adaptation or resistance, reserpine, an efflux pump inhibitor, was added to the strains. Addition of reserpine to the sensitive and adapted strains resulted in a decrease in the MIC for BC, whereas no such decrease was observed for the resistant strains, indicating that efflux pumps played no role in the innate resistance of certain strains of L. monocytogenes to this compound. Two efflux pumps (MdrL and Lde) have been described in L. monocytogenes. Studies showed low and intermediate levels of expression of the genes encoding the efflux pumps for two selected resistant strains, H7764 and H7962, respectively. Adaptation to BC of sensitive isolates of L. monocytogenes resulted in significant increases in expression of mdrl (P < 0.05), but no such increase was observed for lde for two adapted strains of L. monocytogenes, LJH 381 (P = 0.91) and C719 (P = 0.11). This indicates that the efflux pump Mdrl is at least partly responsible for the adaptation to BC.  相似文献   

17.
18.
Aims:  To compare in vitro the inhibitory activity of four bacteriocin-producing Escherichia coli to a well-characterized panel of Salmonella strains, recently isolated from clinical cases in Switzerland.
Methods and Results:  A panel of 68 nontyphoidal Salmonella strains was characterized by pulsed-field gel electrophoresis analysis and susceptibility to antibiotics. The majority of tested strains were genetically different, with 40% resistant to at least one antibiotic. E. coli Mcc24 showed highest in vitro activity against Salmonella (100%, microcin 24), followed by E. coli L1000 (94%, microcin B17), E. coli 53 (49%, colicin H) and E. coli 52 (21%, colicin G) as revealed using a cross-streak activity assay.
Conclusions:  Escherichia coli Mcc24, a genetically modified organism producing microcin 24, and E. coli L1000, a natural strain isolated from human faeces carrying the mcb -operon for microcin B17-production, were the most effective strains in inhibiting in vitro both antibiotic resistant and sensitive Salmonella isolates.
Significance and Impact of the Study:  Due to an increasing prevalence of antibiotic resistant Salmonella strains, alternative strategies to fight these foodborne pathogens are needed. E. coli L1000 appears to be a promising candidate in view of developing biotechnological alternatives to antibiotics against Salmonella infections.  相似文献   

19.
AIMS: The aim of this study was to determine if three classes of farm disinfectants were able to select for ciprofloxacin or cyclohexane tolerant [indicative of a multiple antibiotic resistance (MAR) phenotype] Escherichia coli and if cyclohexane-tolerant E. coli could be isolated from farms. METHODS AND RESULTS: Chicken slurry containing ca 1 : 99 ratio ciprofloxacin resistant : susceptible E. coli (10 different resistant strains examined) was treated for 24 h with each of the disinfectants and examined for survival of resistant : susceptible strains. Ciprofloxacin-sensitive (n=5) and -resistant (n=5) E. coli were grown with sublethal concentrations of the disinfectants and then plated to agar containing ciprofloxacin or overlaid with cyclohexane. Escherichia coli (n=389) isolated from farms were tested for cyclohexane tolerance. Minimum inhibitory concentrations (MIC) were determined against representative isolates and mutants. The disinfectants did not select for the ciprofloxacin-resistant E. coli in poultry slurry but following growth with each of the three disinfectants, higher numbers (P < or = 0.023) of cyclohexane-tolerant E. coli were isolated and these had a MAR phenotype. Of the 389 farm E. coli tested, only one was cyclohexane tolerant. CONCLUSIONS: It is possible that in a farm environment, E. coli could be exposed to similar concentrations of the disinfectants that are selected for MAR type organisms under these laboratory conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Data from this study suggest that cyclohexane-resistant E. coli are not common on farms, but in view of the ease of isolating them in the laboratory with farm disinfectants, further investigations on farms are warranted.  相似文献   

20.
AIMS: The aims of this study were to investigate the epidemiology of quinolone-resistant and -susceptible porcine isolates of Campylobacter coli and to characterize the genetic basis of quinolone resistance. METHODS AND RESULTS: Penner serotyping and flagellin gene sequence polymorphisms were used to investigate the epidemiology of the C. coli isolates. A total of 55 isolates were included, of which 30 were paired resistant and susceptible isolates from 15 pigs. Amplification of gyrA, gyrB and parC, followed by direct sequencing of amplicons was used to identify mutations in the targets of quinolones. Overall, 31 of the isolates were resistant to ciprofloxacin (minimum inhibitory concentrations (MIC), 2- >or = 32 microg x ml(-1)). Thirteen DdeI-flaA profiles were observed and resistant and susceptible strains were identified for nine profiles. The majority of resistant strains exhibited either profile 1 or 6. While profile 1 comprised susceptible and resistant strains, all of the strains with profile 6 were resistant to ciprofloxacin. The serogroup (O:24) of the profile 6 strains was identical. The only other serogroup to be uniformly associated with quinolone resistance was O:5. Strains with this phenotype comprised a number of genotypes, including profile 1. Only four of the paired isolates from individual pigs had the same profile. The genetic basis of quinolone resistance was investigated in two strains with ciprofloxacin MICs of 2 and > or = 32 miccrog x ml(-1), respectively. The amino acid substitution of isoleucine for threonine at position 86 was identified in the GyrA proteins from both strains. No mutations were identified in the GyrB proteins. CONCLUSIONS: There was an association between two of the genotypes, serotypes 5 and 24, and quinolone resistance. The association between genotype, serotype and resistance in C. coli isolates has not been reported previously. Only the mutation in GyrA associated with quinolone resistance was identified. No mutations in GyrB were identified. Amplification products of parC were not obtained and it may be that this gene is not present in some Campylobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides data on the distribution of ciprofloxacin resistance between subtypes of C. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号