首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Functional diversity, an important element of avian biodiversity, can be examined by quantifying foraging guild composition. Understanding the ecological processes that underpin functional diversity of birds in oil palm Elaeis guineensis landscapes is important because different foraging guilds are likely to be influenced in different ways by land use practices. We surveyed birds at 55 sites within oil palm landscapes and at 20 sites within logged peat swamp forest, recording 208 species belonging to 19 foraging guilds. Oil palm landscapes supported a lower abundance of insectivorous, granivorous and omnivorous birds than did logged peat swamp forest despite the latter being severely degraded due to intensive timber extraction. However, abundances of other groups of foraging birds, such as raptors and wetland taxa, were higher in oil palm landscapes than logged peat swamp forest. Frugivorous species were more abundant in smallholdings than plantation estates, probably because of the presence of native trees. Foraging guild diversity was explained by stand‐level attributes such as stand age, vegetation cover, epiphyte persistence and canopy cover. However, each foraging guild exhibited unique responses to different oil palm management regimes and stand‐level attributes. Only arboreal omnivores and terrestrial frugivores were affected by the proximity of nearby natural forest. This diversity of responses implies that the occurrence of particular avian foraging guilds may not be a suitable ecological indicator of best‐practice palm oil production. Our study also suggests that multiple conservation measures will be needed in oil palm landscapes irrespective of management regimes, including: (1) the maintenance of ground layer vegetation cover; (2) the pruning of oil palm canopy to permit light penetration to the ground layer; (3) re‐vegetation of parts of oil palm landscapes with native trees; and (4) retention of natural and/or secondary forest patches within the boundaries of plantations.  相似文献   

2.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

3.
A decline in species number often occurs after forest fragmentation and habitat loss, which usually results in the loss of ecological functions and a reduction in functional diversity in the forest fragments. However, it is uncertain whether these lost ecological functions are consistently maintained throughout continuous forests, and so the importance of these functions in continuous forests remains unknown. Point counts were used to assess both the taxonomic and functional diversity of specialist and generalist birds from sampling in a continuous primary forest compared with forest fragments in order to investigate the responses of these groups to forest fragmentation. We also measured alpha and beta diversity. The responses of specialists and generalists were similar when we assessed all bird species but were different when only passerines were considered. When examining passerines we found lower total taxonomic beta diversity for specialists than for generalists in the continuous forest, while taxonomic beta diversity was higher in the fragmented forest and similar between bird groups. However, total functional beta‐diversity values indicated clearly higher trait regularity in continuous forest for specialists and higher trait regularity in fragments for generalists. Specialists showed significantly higher functional alpha diversity in comparison with generalists in the continuous forest, while both groups showed similar values in fragments. In passerines, species richness and alpha functional diversity of both specialist and generalist were explained by forest connectivity; but, only fragment size explained those parameters for specialist passerines. We suggest that considering subsets of the community with high similarity among species, as passerines, provides a better tool for understanding responses to forest fragmentation. Due to the regularity of specialists in continuous forest, their lost could highly affect functionality in forest fragments.  相似文献   

4.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

5.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

6.
Tropical forest loss and fragmentation can change bee community dynamics and potentially interrupt plant–pollinator relationships. While bee community responses to forest fragmentation have been investigated in a number of tropical regions, no studies have focused on this topic in Australia. In this study, we examine taxonomic and functional diversity of bees visiting flowers of three tree species across small and large rainforest fragments in Australian tropical landscapes. We found lower taxonomic diversity of bees visiting flowers of trees in small rainforest fragments compared with large forest fragments and show that bee species in small fragments were subsets of species in larger fragments. Bees visiting trees in small fragments also had higher mean body sizes than those in larger fragments, suggesting that small‐sized bees may be less likely to persist in small fragments. Lastly, we found reductions in the abundance of eusocial stingless bees visiting flowers in small fragments compared to large fragments. These results suggest that pollinator visits to native trees living in small tropical forest remnants may be reduced, which may in turn impact on a range of processes, potentially including forest regeneration and diversity maintenance in small forest remnants in Australian tropical countryside landscapes.  相似文献   

7.
Movements of organisms between habitat remnants can affect metapopulation structure, community assembly dynamics, gene flow and conservation strategy. In the tropical landscapes that support the majority of global biodiversity and where forest fragmentation is accelerating, there is particular urgency to understand how dispersal across habitats mediates the demography, distribution and differentiation of organisms. By employing unique dispersal challenge experiments coupled with exhaustive inventories of birds in a Panamanian lacustrine archipelago, we show that the ability to fly even short distances (< 100 m) between habitat fragments varies dramatically and consistently among species of forest birds, and that this variation correlates strongly with species' extinction histories and current distributions across the archipelago. This extreme variation in flight capability indicates that species' persistence in isolated forest remnants will be differentially mediated by their respective dispersal abilities, and that corridors connecting such fragments will be essential for the maintenance of avian diversity in fragmented tropical landscapes.  相似文献   

8.
Quantifying how human-modified landscapes shape the distribution of biodiversity is critical for developing effective conservation strategies. To address this, we evaluated three hypotheses (habitat area, habitat configuration and matrix heterogeneity hypotheses) that predict responses of biodiversity to landscape structure in human-modified landscapes. We compared characteristics of landscape structure that influence taxonomic (TD), functional (FD), and phylogenetic (PD) dimensions of biodiversity of breeding birds in temperate forests. Relationships between biodiversity and landscape structure were assessed at multiple spatial scales for 20 forest interior sites in northeastern USA. We assessed if relationships with landscape structure were consistent among dimensions and assemblages of different groups (residents, migrants and all birds). Relationships between dimensions of biodiversity and landscape structure were more prevalent for FD and PD than for TD. Forest amount and configuration were rarely associated with any dimensions of biodiversity. In contrast, the identity of the matrix and heterogeneity of the landscape were frequently associated with biodiversity, but relationships differed among groups of birds. For example, FD of all birds was associated positively with landscape diversity but FD of residents was associated negatively with landscape diversity, suggesting that landscape diversity surrounding forests may increase overall FD of birds but that not all groups of species respond similarly. Indeed, biodiversity of migrants was only weakly related to landscape structure. Differences among relationships to landscape structure for bird groups and spatial scales suggests that management plans should consider local decisions within a regional framework to balance potentially conflicting needs of species groups in human-dominated landscapes.  相似文献   

9.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

10.
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.  相似文献   

11.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

12.
Agricultural practices lead to losses of natural resources and biodiversity. Maintaining forests alongside streams (riparian forest strips) has been used as a mechanism to minimize the impact of clearing for agriculture on biodiversity. To test the contribution of riparian forest strips to conserve biodiversity in production landscapes, we selected bats as a biodiversity model system and examined two dimensions of diversity: taxonomic and functional. We compared bat diversity and composition in forest, with and without stream habitat, and in narrow forest riparian strips surrounded by areas cleared for agriculture. We tested the hypothesis that riparian forest strips provide potential conservation value by providing habitat and serving as movement corridors for forest bat species. Riparian forest strips maintained 75% of the bat species registered in forested habitats. We found assemblage in sites with riparian forest strips were dominated by a few species with high abundance and included several species with low abundance. Bat species assemblage was more similar between sites with streams than between those sites to forests without stream habitat. These results highlight the importance of stream habitat in predicting presence of bat species. We registered similar number of guilds between forest sites and riparian forest strips sites. Relative to matrix habitats, stream and edge habitats in riparian forest strips sites were functionally more diverse, supporting our hypothesis about the potential conservation value of riparian forest strips. Results from this study suggest that maintaining riparian forest strips within cleared areas for agricultural areas helps conserve the taxonomic and functional diversity of bats. Also, it provides basic data to evaluate the efficacy of maintaining these landscape features for mitigating impacts of agricultural development on biodiversity. However, we caution that riparian forest strips alone are not sufficient for biodiversity maintenance; their value depends on maintenance of larger forest areas in their vicinity.  相似文献   

13.
Habitat loss is the main driver of the current high rate of species extinction, particularly in tropical forests. Understanding the factors associated with biodiversity loss, such as the extinction of species interactions and ecological functions, is an urgent priority. Here, our aim was to evaluate how landscape‐scale forest cover influences fruit biomass comparing different tree functional groups. We sampled 20 forest fragments located within landscapes with forest cover ranging from 2 to 93 percent in the Atlantic forest of southern Bahia, Brazil. In each fragment, we established five plots of 25 × 4 m and carried out phenological observations on fleshy fruit throughout 1 year on all trees ≥5 cm dbh. We estimated fruit availability by direct counting of all fruits and derived fruit biomass from this count. We used spatial mixed linear models to evaluate the effects of forest cover on species richness, abundance, and fruit biomass. Our results indicated that forest cover was the main explanatory variable and negatively influenced the total richness and abundance of zoochoric and shade‐tolerant but not shade‐intolerant species. A linear model best explained variations in richness and abundance of total and shade‐tolerant species. We also found that forest cover was positively correlated with the fruit biomass produced by all species and by the shade‐tolerant assemblages, with linear models best explaining both relationships. The loss of shade‐tolerant species and the lower fruit production in fragments with lower landscape‐scale forest cover may have implications for the maintenance of frugivore, seed dispersal service, and plant recruitment.  相似文献   

14.
Natural environments disturbed by human activities can suffer from species extinctions, but some can still harbor high taxonomic diversity. However, disturbances may have impacts beyond the species level, if the species lost represent unique functions in the ecosystem. In this study, we evaluated to what extent the amount of habitat can determine the functional diversity and nestedness of amphibian communities in an Atlantic Forest fragmented landscape in Brazil, and if there is a threshold of habitat amount beyond which there is severe loss of functional diversity. As species responses may depend on their habitat type, we performed the analyses for three different sets of species: all species, forest‐dependent species, and generalist species. We also evaluated the relative importance of turnover and nestedness components to total functional dissimilarity among sites. Habitat amount affected functional diversity of frogs, especially for forest‐dependent species where a linear reduction was detected. The functional dissimilarity among sites was mostly explained by the nestedness component. The reduction of functional diversity was mediated by an ordered loss of traits, leading to a functionally nested metacommunity. These sensitive traits were closely related to habits and reproductive modes that depend on rivers and streams. The maintenance of functional diversity of frogs in fragmented landscapes must rely on the conservation of both terrestrial and aquatic environments, as some species and their traits can disappear from remnants of native vegetation lacking some specific habitats (e.g. streams). Abstract in Portuguese is available with online material.  相似文献   

15.
While it is a truism that species rarity is non-randomly distributed across regions, habitats, and taxa, there is little consensus on which factors are the best predictors of low abundances and restricted geographical ranges. In this study, we evaluate the effects of ecological and life-history traits, as well as phylogeny, on rarity in the abundance and distribution of land birds inhabiting forest habitats in the Mediterranean and temperate regions of Chile. We use data on abundance collected at 16 sites and data on latitudinal distribution obtained from a literature compilation. Statistical analyses were based on multiple regression and multivariate models. We used Signed Mantel test to analyse the relationship between species ecological and life-history traits and rarity, taking into account the effect of phylogenetic relatedness. We found that rarity, in terms of distribution, is associated with a low investment in reproduction, non-migratory status, and degree of habitat specialization. These ecological and life-history traits, in association with forest loss due to climatic changes and human impacts, may explain the narrow distribution of most endemic forest birds species. Rarity in abundance, on the other hand, is more difficult to explain. However, the fact that large species with an insectivorous diet showed low density in the assemblages studied suggests that abundance is mostly regulated by energy (resource) requirements and availability. Finally, our study shows that there is no phylogenetic influence in the observed patterns.  相似文献   

16.
Large isolated trees are keystone structures that can help maintain biodiversity in fragmented landscapes, with evidence that open areas with isolated trees may support similar levels of taxonomic diversity to nearby patches of habitat. However, it is not clear if isolated trees can support the same diversity of ecological functions as trees in habitat patches. We compared species richness, community composition, and functional diversity of birds in trees at forest edges and isolated trees. Twenty isolated trees and ten edge trees of American muskwood (Guarea guidonia) were selected, and sampled on 11 occasions, each of 20 min, over four months. All individual birds that landed at trees were recorded using a standardized protocol. Species richness was, on average, almost twice as high at edge trees than at isolated trees. Taxonomic composition differed between edge and isolated trees, with many forest‐dependent birds restricted to edge trees, and some open‐area birds restricted to isolated trees. Overall functional diversity was similar at edge and isolated trees, but some ecological functions (e.g., frugivory) were less frequent, while others (e.g., granivory) were more frequent at isolated compared with edge trees. Isolated trees are important for supporting many ecological functions in modified areas. However, the maintenance of forest patches is essential to complement the provision of such functions in modified landscapes. Abstract in Portuguese is available with online material.  相似文献   

17.
The persistence of larger mammals in fragmented forest landscapes depends not only on the protection of remaining habitats but also on ecological restoration sites. It is known that the landscape context is an important predictor of species persistence, abundance and distribution. Here we evaluate how landscape characteristics influence the recovery of larger mammals in ecological restoration sites. We assess the richness and composition of mammals in forest fragments and restoration sites using landscape metrics such as forest cover and connectivity. Forest fragments and restoration sites present the same richness (n = 26), but differ in species composition. Some seed-dispersing mammals were absent in restoration areas, such as Alouatta guariba (brown howler monkey) and Coendou spinosus (paraguayan hairy dwarf porcupine). The percentage of forest cover in the landscape was responsible for 29.09% of the variation in species composition between the evaluated forest formations, exerting a positive or negative influence depending on the species requirements. The results demonstrate the importance of considering not only landscape metrics in an ecological restoration plan, but also the historical landscape context, such as the fauna composition before the disturbance and how these species respond to environmental changes, thus improving the success of future ecological restoration measurements and policies.  相似文献   

18.
Bird communities composed of habitat specialists suffer considerable loss of species following disturbance (Ecol. Monogr. 41 , 1971, 207–233). Participatory forest management (PFM) aims to ensure local ownership and support for forest conservation. This study determined if forest birds and forest quality in places under PFM is significantly higher than areas without PFM in Arabuko‐Sokoke forest. Forest quality data were collected in the PFM and no PFM zones in the Mixed forest (MF) and Cynometra Woodland (CW). Plot‐based approach was used to collect vegetation data along 1 km transects at intervals of 1 km sampling twenty transects and 200 plots in each of the study zones. Birds’ data were collected using 10‐min point‐counts along 88, 1 km long transects placed 1‐km apart sampling in 30 m radius‐plots at intervals of 100 m. Data were collected in 2008 and 2009. The results showed higher measures of forest quality in PFM zones than no PFM zones which showed higher measures of forest disturbance. The results did not show statistical differences in birds’ diversity indexes between PFM and no PFM zones indicating that the human‐induced disturbance has not reached critical ecological thresholds to affect birds’ species diversity. It can be deduced that PFM investment is leading to improved forest management.  相似文献   

19.
Aim To examine the influence of climatic extinction filtering during the last glacial maximum (LGM; c. 18,000 yr bp ) and of the subsequent recolonization of forest faunas on contemporary assemblage composition in southern African forests. Location South Africa, Mozambique, Swaziland, Zimbabwe. Methods Data comprised presence/absence by quarter‐degree grid cell for forest‐dependent and forest‐associated birds, non‐volant mammals and frogs. Twenty‐one forest subregions were assigned to one of three previously identified forest types: Afrotemperate, scarp, and Indian Ocean coastal belt. Differences among forest types were examined through patterns and gradients of species richness and endemism, assemblage similarity, species turnover, and coefficients of species dispersal direction. The influence of contemporary environment on assemblage composition was investigated using partial canonical correspondence analysis. Several alternative biogeographical hypotheses for the recolonization of forest faunas were tested. Results Afrotemperate faunas are relatively species‐poor, have low species turnover, and are unsaturated and infiltrated by generalist species. In northern and central regions, communities are supplemented by recolonization from scarp forest refugia, and among frogs by autochthanous speciation in localized refugia. Scarp faunas are relatively species‐rich, contain many forest‐dependent species, have high species turnover, and overlap with coastal and Afrotemperate faunas. Coastal forests are relatively species‐rich with high species turnover. Main conclusions Afrotemperate communities were affected most by climatic extinction filtering events. Scarp forests were Afrotemperate refugia during the LGM and are a contemporary overlap zone between Afrotemperate and coastal forest. Coastal faunas derive from post‐LGM colonization along the eastern seaboard from tropical East African refugia. The greatest diversity is achieved in scarp and coastal forest faunas in northern KwaZulu–Natal province. This historical centre of diversity has influenced the faunal diversity of nearly all other forests in South Africa. The response of vertebrate taxa to large‐scale, historical processes is dependent on their relative mobility: forest birds best illustrate patterns resulting from post‐glacial faunal dispersal, while among mammals and frogs the legacy of climatic extinction filtering remains stronger.  相似文献   

20.
The traditional shade cacao plantations (cabrucas) of southern Bahia, Brazil, are biologically rich habitats, encompassing many forest-dwelling species. However, a critical question for the conservation management of this specific region, and the highly fragmented Atlantic forest in general, is to what extent the conservation value of cabrucas relies on the presence of primary forest habitat in the landscape. We investigated the relative importance of cabrucas and forests for the conservation of five diverse biological groups (ferns, frogs, lizards, birds and bats) in two contrasting landscapes in southern Bahia, one dominated by forest with some interspersed cabrucas, and one dominated by cabrucas with interspersed forest fragments. The community structure (richness, abundance and diversity) of all biological groups differed between cabrucas and forests, although these differences varied among groups. A high number of forest species was found in the cabrucas. However, there were pronounced differences between the two landscapes with regard to the ability of cabrucas to maintain species richness. Irrespective of the biological group considered, cabrucas located in the landscape with few and small forest fragments supported impoverished assemblages compared to cabrucas located in the landscape with high forest cover. This suggests that a greater extent of native forest in the landscape positively influences the species richness of cabrucas. In the landscape with few small forest fragments interspersed into extensive areas of shade cacao plantations, the beta diversity of birds was higher than in the more forested landscape, suggesting that forest specialist species that rarely ventured into cabrucas were randomly lost from the fragments. These results stress both the importance and the vulnerability of the small forest patches remaining in landscapes dominated by shade plantations. They also point to the need to preserve sufficient areas of primary habitat even in landscapes where land use practices are generally favorable to the conservation of biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号