首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
BACKGROUND AND AIMS: In the dry tropics, vegetative phenology varies widely with tree characteristics and soil conditions. The present work aims to document the phenological diversity of flowering and fruiting with reference to leafing events in Indian dry-tropical tree species. METHODS: Nine tree species, including one leaf-exchanging and eight deciduous showing varying leafless periods, were studied. Monthly counts of leaves, flowers and fruits were made on 160 tagged twigs on ten individuals of each species for initiation, completion and duration of different phenological events through two annual cycles. KEY RESULTS: Variation in flowering relative to leaf flushing (which occurred just prior to or during a hot, dry summer) revealed five flowering types: summer flowering (on foliated shoots), rainy-season flowering (on foliated shoots following significant rains), autumn flowering (on shoots with mature leaves), winter flowering (on shoots undergoing leaf fall) and dry-season flowering (on leafless shoots). Duration of the fruiting phenophase was shortest (3-4 months) in dry-season and winter-flowering species, 6-9 months in rainy-and autumn-flowering species, and maximum (11 months) in summer-flowering species. A wide range of time lag (<1 to >8 months) between the start of vegetative (first-leaf flush) and reproductive (first-visible flower) phases was recorded in deciduous species; this time lag was correlated with the extent of the leafless period. A synthesis of available phenological information on 119 Indian tropical trees showed that summer-flowering species were most abundant (56 % of total species) amongst the five types recognized. CONCLUSIONS: The wide diversity of seasonal flowering and fruiting with linkages to leaf flush time and leafless period reflect the fact that variable reproductive and survival strategies evolved in tree species under a monsoonic bioclimate. Flowering periodicity has evolved as an adaptation to an annual leafless period and the time required for the fruit to develop. The direct relationship between leafless period (inverse of growing period) and time lag between onset of vegetative and reproductive phases reflects the partitioning of resource use for supporting these phases. Predominance of summer flowering coupled with summer leaf flushing seems to be a unique adaptation in trees to survive under a strongly seasonal tropical climate.  相似文献   

2.
Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old‐field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was  = 0.31 (range: 0.05–0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (= ?0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring‐flowering species are no more likely to experience an accelerated evolutionary response than summer species.  相似文献   

3.
Abstract Normanbya normanbyi (W. Hill) L. H. Bailey (Arecaceae) is a monoecious, arborescent palm with a very small distribution area within the Daintree rainforest in north‐eastern Australia. Our 2‐year study was focused on the reproductive phenology at the individual and population level. At the population level flowering peaked in the dry season, whereas fruiting was confined to the wet season. Each palm can bear up to three inflorescences/infructescences at the same time. Flowering of each inflorescence is separated from each other by a couple of weeks. A single inflorescence consists of about 1900 staminate and 800 pistillate flowers. The flowering of N. normanbyi is protandrous with a staminate phase lasting 40 days and a pistillate phase of approximately 2 weeks. Between both phases is a non‐flowering phase of about 9 days. Fruit ripening takes 21 weeks, with an average of about 280 ripe fruit per tree. Comparison of three study plots revealed a moderate synchrony of flowering and fruiting initiation in this species of palm. The male phase of flowering shows a higher degree of synchrony than the female phase at the population level. Seasonal regularity of flowering and fruiting peaks appears to be predictable. The general flowering and fruiting phenology of N. normanbyi follows a subannual pattern with a strong tendency towards a continual pattern.  相似文献   

4.
The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008–2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg’s K and Pagel’s lambda to assess the phylogenetic signal in phenological traits and species’ phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species’ phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.  相似文献   

5.
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   

6.
《植物生态学报》2014,38(6):585
为了探讨我国热带地区植物物候与气候变化的关系, 利用海南岛尖峰岭热带树木园12种热带常绿阔叶乔木植物2003-2011年物候观测资料结合同期月平均气温和降水数据, 运用积分回归分析方法, 筛选出影响海南岛12种乔木(8种本地种、4种引入种)展叶始期与开花始期的气象因素以及不同气象因素月值变化(月平均气温和月降水量)综合作用对这些树种物候期的动态影响, 最终建立积分回归-物候预测模型, 对气候变化背景下我国热带地区植物物候变化趋势进行了预测。结果表明: 海南岛12种热带常绿阔叶乔木展叶始期与开花始期均对气候变化做出较明显的响应, 几乎所有的树种展叶始期与开花始期的发生都受到气温和降水的共同影响。多数树种展叶始期受展叶前冬季及春季气温影响显著, 且在临近展叶始期的月份, 气温的影响更显著。上一年秋季月降水量对各树种开花始期的影响比其他时段显著, 这验证了降水的滞后性假说。本地种展叶始期对气候变化的响应比其开花始期对气候变化的响应更敏感, 引入种则相反。各树种展叶和开花在受气温和降水综合影响最明显的月份(假设其余11个月份月平均气温和月降水量不变), 月平均气温升高0.1 ℃、月降水量增加10 mm可使展叶始期和开花始期提前或推迟1-3天。积分回归分析方法为解释海南岛热带常绿阔叶乔木物候与气温和降水的动态关系提供了有效的途径, 基于气温和降水与物候资料建立的积分回归-物候预测模型具有对气温和降水变化影响下物候响应的解释率和预测精度高(R2≥ 0.943)的优点, 对于预测气候变化影响下的植物物候变化趋势有一定的适用性。  相似文献   

7.
为了探讨我国热带地区植物物候与气候变化的关系, 利用海南岛尖峰岭热带树木园12种热带常绿阔叶乔木植物2003-2011年物候观测资料结合同期月平均气温和降水数据, 运用积分回归分析方法, 筛选出影响海南岛12种乔木(8种本地种、4种引入种)展叶始期与开花始期的气象因素以及不同气象因素月值变化(月平均气温和月降水量)综合作用对这些树种物候期的动态影响, 最终建立积分回归-物候预测模型, 对气候变化背景下我国热带地区植物物候变化趋势进行了预测。结果表明: 海南岛12种热带常绿阔叶乔木展叶始期与开花始期均对气候变化做出较明显的响应, 几乎所有的树种展叶始期与开花始期的发生都受到气温和降水的共同影响。多数树种展叶始期受展叶前冬季及春季气温影响显著, 且在临近展叶始期的月份, 气温的影响更显著。上一年秋季月降水量对各树种开花始期的影响比其他时段显著, 这验证了降水的滞后性假说。本地种展叶始期对气候变化的响应比其开花始期对气候变化的响应更敏感, 引入种则相反。各树种展叶和开花在受气温和降水综合影响最明显的月份(假设其余11个月份月平均气温和月降水量不变), 月平均气温升高0.1 ℃、月降水量增加10 mm可使展叶始期和开花始期提前或推迟1-3天。积分回归分析方法为解释海南岛热带常绿阔叶乔木物候与气温和降水的动态关系提供了有效的途径, 基于气温和降水与物候资料建立的积分回归-物候预测模型具有对气温和降水变化影响下物候响应的解释率和预测精度高(R2≥ 0.943)的优点, 对于预测气候变化影响下的植物物候变化趋势有一定的适用性。  相似文献   

8.
Flowering phenology is very sensitive to climate and with increasing global warming the flowering time of plants is shifting to earlier or later dates. Changes in flowering times may affect species reproductive success, associated phenological events, species synchrony, and community composition. Long‐term data on phenological events can provide key insights into the impacts of climate on phenology. For Australia, however, limited data availability restricts our ability to assess the impacts of climate change on plant phenology. To address this limitation other data sources must be explored such as the use of herbarium specimens to conduct studies on flowering phenology. This study uses herbarium specimens for investigating the flowering phenology of five dominant and commercially important Eucalyptus species of south‐eastern Australia and the consequences of climate variability and change on flowering phenology. Relative to precipitation and air humidity, mean temperature of the preceding 3 months was the most influential factor on the flowering time for all species. In response to a temperature increment of 1°C, a shift in the timing of flowering of 14.1–14.9 days was predicted for E. microcarpa and E. tricarpa while delays in flowering of 11.3–15.5 days were found for E. obliqua, E. radiata and E. polyanthemos. Eucalyptus polyanthemos exhibited the greatest sensitivity to climatic variables. The study demonstrates that herbarium data can be used to detect climatic signals on flowering phenology for species with a long flowering duration, such as eucalypts. The robust relationship identified between temperature and flowering phenology indicates that shifts in flowering times will occur under predicted climate change which may affect reproductive success, fitness, plant communities and ecosystems.  相似文献   

9.
Although lowland tree species in the ever-wet regions of Southeast Asia are characterized by the supra-annual cycle of reproduction, the reproductive phenology of montane tree species remains poorly understood. In this study, we investigated the reproductive phenology of montane tree species using litter samples that were collected every 2 weeks from six rainforest sites, consisting of three elevations (1700, 2700, and 3100 m), on Mount Kinabalu, Borneo. At each elevation, one site was on infertile ultrabasic soil and one was on relatively fertile non-ultrabasic soil. We used a composite sample from 10 or 20 litter traps per site and sorted it by species. Therefore, the obtained data captured reproductive phenology in the population of each species rather than in an individual tree. Ten-year time series of flower and fruit litterfall were obtained for 30 and 39 tree species, respectively. Fourier analysis was used to identify the dominant cycle of each time series. The most abundant cycle across species was supra-annual, followed by sub-annual, and annual cycles. Many species at higher elevations showed supra-annual cycles of flower litterfall, whereas species in the 1700 m sites often showed annual or sub-annual cycles regardless of soil types. No systematic differences were found among sites for fruit litterfall. Mechanisms underlying these elevational patterns in reproductive cycle remain unclear but may include more severe El Niño droughts, lower primary productivity, lower soil fertility, and the absence of some sub-annually or annually reproducing families at higher elevations.  相似文献   

10.
Year-round flowering is widely reported in fig trees and is necessary for the survival of their short-living, specialized Agaonid pollinators. However, seasonality in both fig and leaf production has been noted in almost all published phenological studies. We have addressed the following questions in the present study: (1) Are reproductive and vegetative phenologies seasonal and, consequently, related to climate? (2) Does Ficus citrifolia produce ripe figs year round? (3) Is the fig development related to climate? And, (4) Are reproductive and vegetative phenologies independent? By investigating these questions with a F. citrifolia population over a two-year period, at the southern edge of the tropical region in Brazil, we detected phenological seasonality that was significantly correlated with climate. Our findings can be summarized as follows: (1) Trees became deciduous during the cold and dry months; (2) The flowering onset was asynchronous among individuals, but with moderate concentration during the hot and rainy months; (3) There was a correlation between the onset of flowering and vegetative phenology, with significantly higher crop initiations in individuals with full-leaf canopy; (4) Fig developmental time was longer in cold months; and (5) Ripe fig production occurred year-round and was not correlated with climate. Our results suggest that there are strong selection pressures that maintain the year-round flowering phenology in figs, for we have observed little seasonality in the phenology of such species despite the strong seasonality in the environment.  相似文献   

11.
The seasonal timing of flowering and fruiting is crucial for the reproductive success of plants and for resource availability to animals. Although plants synchronize their reproductive timing to coincide with appropriate seasons by responding to environmental cues, seasonal variations in temperature and precipitation vary minimally in very wet tropical environments. To explore the latitudinal cline in the reproductive phenology of the Fagaceae in Asia, we analyzed phenology data for a total of 94, 121, and 219 species from Thailand, Malesia, and China, respectively, in the three genera of Fagaceae, Quercus, Castanopsis, and Lithocarpus. We found that Quercus and Castanopsis showed flowering peaks in April in China. In Thailand, the peak shifted to an earlier month, and the peak disappeared in Malesia. The flowering period lengthened with decreasing latitude in the animal-pollinated genera Castanopsis and Lithocarpus. However, this was not the case for the wind-pollinated genus Quercus. The fruiting period lengthened with decreasing latitude in all three genera. We examined the relationship between reproductive phenology and climatic factors. The combination of monthly temperature and precipitation best explained the monthly change in the proportion of flowering and fruiting species in China in all three genera. However, climatic factors had almost no impact on the predictive ability of the model in Malesia. Our results on phenological shifts in the family Fagaceae, from the temperate climates and seasonal tropics to the humid tropics, provide valuable information for predicting phenological changes in future climate change.  相似文献   

12.
苏晓磊  曾波  乔普  阿依巧丽  黄文军 《生态学报》2010,30(10):2585-2592
开花物候及繁殖分配是植物适应环境的重要因素,为了解长期冬季水淹对三峡库区耐淹物种秋华柳(Salix variegata Franch.)繁殖的影响,研究了长期冬季水淹条件下秋华柳的开花物候和繁殖分配情况。实验在2006年11月份设置了如下处理:对照,完全水淹(植株置于水中,顶部距水面2m)30,60,90,120d和150d。结果表明:(1)对照及各水淹处理的秋华柳花期都较长,在7-11月份持续开花,个体开花进程(开花振幅曲线)呈单峰曲线。(2)冬季水淹对秋华柳群体及个体的开花物候有显著影响。水淹时间越长,始花期越晚,花期持续时间越短(P0.05)。(3)长期冬季水淹下,秋华柳显著降低了繁殖分配比例和全株生物量及单株花序数(P0.05)。(4)开花物候指数与繁殖分配的相关分析表明:始花时间越晚的个体,花期持续时间越短。花期持续时间越短的个体花序数越少,致使繁殖分配越小。总的来说,冬季水淹下,秋华柳通过推迟开花日期、缩短花期持续时间使繁殖分配比例降低,将更多的资源分配到生存力上,是秋华柳对长期冬季水淹的一种适应。同时,在长期冬季水淹后,秋华柳仍保持一定的开花繁殖能力,是其在应用于三峡水库消落区植被构建后产生后代延续种群的前提条件。  相似文献   

13.
作为高山生态系统中的奠基种(foundation species), 垫状植物自身种群的繁殖与扩张, 对高山生态系统功能稳定性起着关键作用。但是, 垫状植物如何在极端环境条件下实现资源的有效利用与分配, 达到繁殖最优化, 至今鲜为人知。该研究在滇西北白马雪山沿海拔梯度选择具有不同坡度及坡向的5个团状福禄草(Arenaria polytrichoides)种群, 调查、比较种群内、种群间以及具有不同性系统的植株个体之间的开花面积比、开花方位, 并分析不同生态因子对其开花特性的影响。结果表明: 随着海拔的升高, 团状福禄草个体变小, 其分配到开花的资源比例总体上随海拔上升呈现下降的趋势, 说明团状福禄草的繁殖分配受到由海拔所引起的生态因子的调控。但是, 部分低海拔种群内植物个体的繁殖分配显著低于部分高海拔种群, 说明海拔并非控制植物繁殖分配的唯一因素。此外, 植株开花总面积随植株个体增大而增加, 但开花面积比却随个体增大而变小, 说明植株分配到开花的资源增长速率可能低于植株个体的增长速率。在性别差异方面, 两性植株对开花的资源分配比例要显著高于雌性植株, 但是, 其差异程度受到海拔因素的影响。最后, 在同一种群内, 团状福禄草在冠层表面不同方位上的开花面积比存在显著差异性, 这种差异性在不同种群之间又具有不同的表现形式。  相似文献   

14.
《植物生态学报》2021,44(11):1154
Aims As foundation species in the alpine ecosystems, the reproduction and recruitment of alpine cushion plants are very important for sustaining the alpine ecosystem functions. However, it still remains unclear that how cushion plants effectively allocate resources to optimize reproductive fitness.Methods Here we selected five populations of a gynodioecious herb Arenaria polytrichoides with different exposures and slopes along an altitudinal gradient on the Baima snow mountain in northwest Yunnan, southwest China, to investigate and compare flowering area and positions, within and among populations and between female and hermaphroditic morphs. By doing so, we further discuss how the environmental stresses affect the cushion’s flowering attributes thus the population-level reproduction.Important findings The results showed that, individual plant size and resources allocated to flowering (flowering area %) both decreased with increasing elevation, indicating that the reproductive allocation strategy was significantly affected by elevation. However, a population at lower elevation showed lower reproductive investment than higher populations, suggesting that elevation was not the only factor affecting the cushion’s reproductive allocation. In addition, absolute flowering area increased with increasing individual size, but the flowering area ratio decreased, indicating that the increases in reproductive allocation are fewer than that in vegetative allocation. Hermaphroditic individuals invested more resources to flowering than females did, but again, such effect was affected by elevation. Moreover, within a single population, the flowering areas were significantly different among the four directions (east, south, west and north) within one single individual canopy, but such differences varied in different populations.  相似文献   

15.
开花时间决定了植物雌雄功能的交配机会, 最终影响繁殖成功。交配环境假说认为雌雄异熟植物开花时间的差异能引起植物表型性别的变异, 改变种群内的交配环境, 影响植物对雌雄功能的最佳性分配。为了研究开花时间对雌雄异熟植物的雌雄性别时期及表型性别的影响, 本文以毛茛科雄性先熟植物露蕊乌头(Aconitum gymnandrum)为实验材料, 记录了雄性和雌性功能期, 分析了植株开花时间、花的雌雄功能期和表型性别的关系。结果表明: 在植物同一花序内, 较晚开放的花有更长的雄性期和更短的雌性期, 性分配在时间上偏雄。雌雄功能期在时间上的相对分配随植物开花时间的变化表现出相似的趋势: 较晚开的花或较晚开花的个体, 花的雄性功能期相对于雌性功能期更长, 在时间上更偏向雄性功能。而且, 开花时间的差异影响种群内花的性比和植物个体的表型性别动态。随着开花时间由早到晚的变化, 种群内早期以雄花为主,末期以雌花为主, 种群内性别环境由偏雄向偏雌变化, 因此植株个体的平均表型性别则从偏雌转向偏雄。本文结果支持交配环境假说, 雄性先熟的露蕊乌头开花早期, 种群内花的性别比偏雄, 种群表型性别环境偏雄, 因而植物个体平均表型性别偏雌, 性别分配(即时间分配)偏向雌性功能, 而晚开花个体的平均性别偏雄, 更偏向雄性功能的分配。  相似文献   

16.
Flowering phenology and clonal growth are known to affect resource and pollen availability, and therefore select for adaptive or constrained sex allocation strategies to some degree. However, the consequences of temporal sex allocation patterns for reproductive fitness across the flower, inflorescence, and genet levels have rarely been examined. Moreover, experimental tests of the underlying regulatory mechanisms are scarce. We examined the association of flowering phenology and inflorescence position with temporal sex allocation and reproductive success in the protandrous perennial clonal herb, Aconitum kusnezoffii, over four consecutive growing seasons by examining more than 39 000 flowers. We also conducted controlled experiments to test the effects of resource and pollen limitation on the female reproductive success of lateral inflorescences. We found that some male functions were positively correlated with flowering phenology, whereas female reproductive success was negatively correlated with flowering phenology and inflorescence position. Lateral inflorescences invested more in male function than terminal inflorescences and therefore yielded fewer and smaller seeds. Resource limitation may serve as the key mechanism underlying this differentiated pattern. Decreased female reproductive success was consistently observed at the flower and inflorescence levels as flowering occurred later in the growth season. Late-blooming lateral inflorescences specialized in the male function, and their female reproductive success was constrained by early-blooming terminal inflorescences. This might be the first attempt to systematically demonstrate sex allocation strategy differentiation in a protandrous plant species at the inflorescence level. In addition, our study provides empirical evidence of dichogamy selecting for specialized sex allocation strategies among inflorescences.  相似文献   

17.
To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.  相似文献   

18.
Global climate change is predicted to have large impacts on the phenology and reproduction of alpine plants, which will have important implications for plant demography and community interactions, trophic dynamics, ecosystem energy balance, and human livelihoods. In this article we report results of a 3‐year, fully factorial experimental study exploring how warming, snow addition, and their combination affect reproductive phenology, effort, and success of four alpine plant species belonging to three different life forms in a semiarid, alpine meadow ecosystem on the central Tibetan Plateau. Our results indicate that warming and snow addition change reproductive phenology and success, but responses are not uniform across species. Moreover, traits associated with resource acquisition, such as rooting depth and life history (early vs. late flowering), mediate plant phenology, and reproductive responses to changing climatic conditions. Specifically, we found that warming delayed the reproductive phenology and decreased number of inflorescences of Kobresia pygmaea C. B. Clarke, a shallow‐rooted, early‐flowering plant, which may be mainly constrained by upper‐soil moisture availability. Because K. pygmaea is the dominant species in the alpine meadow ecosystem, these results may have important implications for ecosystem dynamics and for pastoralists and wildlife in the region.  相似文献   

19.
西安和宝鸡木本植物花期物候变化及温度敏感度对比   总被引:2,自引:0,他引:2  
陶泽兴  葛全胜  徐韵佳  王焕炯 《生态学报》2020,40(11):3666-3676
植物物候是指示生态系统对气候变化响应的重要证据。已有研究多基于代表性站点的物候观测数据研究物候特征及其对气候变化的响应规律。同一气候区内,不同站点的物候变化及对温度变化响应的敏感度是否一致仍需深入探讨。本文选择同属于暖温带湿润区汾渭平原气候区的西安和宝鸡为研究区,利用"中国物候观测网"在两个站点21个共有物种的开花始期和开花末期数据,比较了1987—2016年两站点各植物花期物候变化特征及其对温度变化响应的敏感度差异。结果表明,西安和宝鸡各物种的开花始期和开花末期均以提前趋势为主。大部分物种开花始期在西安的提前趋势(平均趋势-0.57 d/a)明显强于在宝鸡的提前趋势(平均趋势-0.29 d/a),但开花末期趋势差异不显著。除紫薇和迎春的敏感度差异较大外,其他物种开花始期和开花末期的温度敏感度在两站点间非常接近,无显著差异。由此可见,在同一气候区的不同站点,因增温幅度不同,植物的始花期变化存在较大差异,不能用单站点的物候变化反映整个气候区的物候变化。但同一植物在单站点的温度敏感度可以较好的反映同一气候区其他站点的植物物候-气候关系。本文研究结果可为利用有限站点的物候观测数据分析区域物候变化及对气候变化的响应提供科学依据。  相似文献   

20.
One of the most intriguing and complex characteristics of reproductive phenology in tropical forests is high diversity within and among forests. To understand such diversity, Newstrom et al. provided a systematic framework for the classification of tropical flowering phenology. They adopted frequency and regularity as criteria with priority, and classified plants in La Selva, Costa Rica, where most plants reproduced more than once a year irregularly. Many other studies have demonstrated annual cycles corresponding to rainfall patterns at the community level in Neotropical forests, including La Selva. On the other hand, supraannual flowering synchronized among various plant species, called general flowering, is known from aseasonal lowland dipterocarp forests in Southeast Asia. Within both forests, a wide spectrum of flowering patterns is found. This range of patterns suggests the great potential of tropical phenological studies to explore the selective pressures on phenology. Various abiotic and biotic factors can be selective agents. The shared pollinators hypothesis suggests that plant species sharing pollinators segregate flowering temporarily to minimize interspecific overlap in flowering times and thus minimize ineffective pollination or competition for pollinators, indicating strong phylogenetic constraints in timing and variation of flowering. Comparison of phenology within and among forests may help our understanding of phenological diversity. Attempts are now being made to develop a common language to communicate concepts and render interpretations of data more compatible among investigators and to create a network to promote comparative studies. Received: September 8, 2000 / Accepted: January 30, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号