首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Semiparametric analysis of correlated recurrent and terminal events   总被引:2,自引:0,他引:2  
In clinical and observational studies, recurrent event data (e.g., hospitalization) with a terminal event (e.g., death) are often encountered. In many instances, the terminal event is strongly correlated with the recurrent event process. In this article, we propose a semiparametric method to jointly model the recurrent and terminal event processes. The dependence is modeled by a shared gamma frailty that is included in both the recurrent event rate and terminal event hazard function. Marginal models are used to estimate the regression effects on the terminal and recurrent event processes, and a Poisson model is used to estimate the dispersion of the frailty variable. A sandwich estimator is used to achieve additional robustness. An analysis of hospitalization data for patients in the peritoneal dialysis study is presented to illustrate the proposed method.  相似文献   

2.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

3.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

4.
Individuals may experience more than one type of recurrent event and a terminal event during the life course of a disease. Follow‐up may be interrupted for several reasons, including the end of a study, or patients lost to follow‐up, which are noninformative censoring events. Death could also stop the follow‐up, hence, it is considered as a dependent terminal event. We propose a multivariate frailty model that jointly analyzes two types of recurrent events with a dependent terminal event. Two estimation methods are proposed: a semiparametrical approach using penalized likelihood estimation where baseline hazard functions are approximated by M‐splines, and another one with piecewise constant baseline hazard functions. Finally, we derived martingale residuals to check the goodness‐of‐fit. We illustrate our proposals with a real dataset on breast cancer. The main objective was to model the dependency between the two types of recurrent events (locoregional and metastatic) and the terminal event (death) after a breast cancer.  相似文献   

5.
Joint analysis of recurrent and nonrecurrent terminal events has attracted substantial attention in literature. However, there lacks formal methodology for such analysis when the event time data are on discrete scales, even though some modeling and inference strategies have been developed for discrete-time survival analysis. We propose a discrete-time joint modeling approach for the analysis of recurrent and terminal events where the two types of events may be correlated with each other. The proposed joint modeling assumes a shared frailty to account for the dependence among recurrent events and between the recurrent and the terminal terminal events. Also, the joint modeling allows for time-dependent covariates and rich families of transformation models for the recurrent and terminal events. A major advantage of our approach is that it does not assume a distribution for the frailty, nor does it assume a Poisson process for the analysis of the recurrent event. The utility of the proposed analysis is illustrated by simulation studies and two real applications, where the application to the biochemists' rank promotion data jointly analyzes the biochemists' citation numbers and times to rank promotion, and the application to the scleroderma lung study data jointly analyzes the adverse events and off-drug time among patients with the symptomatic scleroderma-related interstitial lung disease.  相似文献   

6.
Shared frailty models for recurrent events and a terminal event   总被引:1,自引:0,他引:1  
Liu L  Wolfe RA  Huang X 《Biometrics》2004,60(3):747-756
There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless, 2002, Statistical Methods in Medical Research 11, 141-166). In many situations, a terminating event such as death can happen during the follow-up period to preclude further occurrence of the recurrent events. Furthermore, the death time may be dependent on the recurrent event history. In this article we consider frailty proportional hazards models for the recurrent and terminal event processes. The dependence is modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects can be taken into account in the model as well. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with Metropolis-Hastings sampler in the E-step. An analysis of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution with marginal proportional hazards and yields an estimate of the degree of dependence.  相似文献   

7.
In many medical studies, markers are contingent on recurrent events and the cumulative markers are usually of interest. However, the recurrent event process is often interrupted by a dependent terminal event, such as death. In this article, we propose a joint modeling approach for analyzing marker data with informative recurrent and terminal events. This approach introduces a shared frailty to specify the explicit dependence structure among the markers, the recurrent, and terminal events. Estimation procedures are developed for the model parameters and the degree of dependence, and a prediction of the covariate‐specific cumulative markers is provided. The finite sample performance of the proposed estimators is examined through simulation studies. An application to a medical cost study of chronic heart failure patients from the University of Virginia Health System is illustrated.  相似文献   

8.
The observation of repeated events for subjects in cohort studies could be terminated by loss to follow-up, end of study, or a major failure event such as death. In this context, the major failure event could be correlated with recurrent events, and the usual assumption of noninformative censoring of the recurrent event process by death, required by most statistical analyses, can be violated. Recently, joint modeling for 2 survival processes has received considerable attention because it makes it possible to study the joint evolution over time of 2 processes and gives unbiased and efficient parameters. The most commonly used estimation procedure in the joint models for survival events is the expectation maximization algorithm. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of the continuous hazard functions in a general joint frailty model with right censoring and delayed entry. The simulation study demonstrates that this semiparametric approach yields satisfactory results in this complex setting. As an illustration, such an approach is applied to a prospective cohort with recurrent events of follicular lymphomas, jointly modeled with death.  相似文献   

9.
Summary .  Recurrent event data analyses are usually conducted under the assumption that the censoring time is independent of the recurrent event process. In many applications the censoring time can be informative about the underlying recurrent event process, especially in situations where a correlated failure event could potentially terminate the observation of recurrent events. In this article, we consider a semiparametric model of recurrent event data that allows correlations between censoring times and recurrent event process via frailty. This flexible framework incorporates both time-dependent and time-independent covariates in the formulation, while leaving the distributions of frailty and censoring times unspecified. We propose a novel semiparametric inference procedure that depends on neither the frailty nor the censoring time distribution. Large sample properties of the regression parameter estimates and the estimated baseline cumulative intensity functions are studied. Numerical studies demonstrate that the proposed methodology performs well for realistic sample sizes. An analysis of hospitalization data for patients in an AIDS cohort study is presented to illustrate the proposed method.  相似文献   

10.
Recurrent event data arise in longitudinal follow‐up studies, where each subject may experience the same type of events repeatedly. The work in this article is motivated by the data from a study of repeated peritonitis for patients on peritoneal dialysis. Due to the aspects of medicine and cost, the peritonitis cases were classified into two types: Gram‐positive and non‐Gram‐positive peritonitis. Further, since the death and hemodialysis therapy preclude the occurrence of recurrent events, we face multivariate recurrent event data with a dependent terminal event. We propose a flexible marginal model, which has three characteristics: first, we assume marginal proportional hazard and proportional rates models for terminal event time and recurrent event processes, respectively; second, the inter‐recurrences dependence and the correlation between the multivariate recurrent event processes and terminal event time are modeled through three multiplicative frailties corresponding to the specified marginal models; third, the rate model with frailties for recurrent events is specified only on the time before the terminal event. We propose a two‐stage estimation procedure for estimating unknown parameters. We also establish the consistency of the two‐stage estimator. Simulation studies show that the proposed approach is appropriate for practical use. The methodology is applied to the peritonitis cohort data that motivated this study.  相似文献   

11.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

12.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

13.
We propose a joint analysis of recurrent and nonrecurrent event data subject to general types of interval censoring. The proposed analysis allows for general semiparametric models, including the Box–Cox transformation and inverse Box–Cox transformation models for the recurrent and nonrecurrent events, respectively. A frailty variable is used to account for the potential dependence between the recurrent and nonrecurrent event processes, while leaving the distribution of the frailty unspecified. We apply the pseudolikelihood for interval-censored recurrent event data, usually termed as panel count data, and the sufficient likelihood for interval-censored nonrecurrent event data by conditioning on the sufficient statistic for the frailty and using the working assumption of independence over examination times. Large sample theory and a computation procedure for the proposed analysis are established. We illustrate the proposed methodology by a joint analysis of the numbers of occurrences of basal cell carcinoma over time and time to the first recurrence of squamous cell carcinoma based on a skin cancer dataset, as well as a joint analysis of the numbers of adverse events and time to premature withdrawal from study medication based on a scleroderma lung disease dataset.  相似文献   

14.
In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.  相似文献   

15.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

16.
Summary In many instances, a subject can experience both a nonterminal and terminal event where the terminal event (e.g., death) censors the nonterminal event (e.g., relapse) but not vice versa. Typically, the two events are correlated. This situation has been termed semicompeting risks (e.g., Fine, Jiang, and Chappell, 2001 , Biometrika 88, 907–939; Wang, 2003 , Journal of the Royal Statistical Society, Series B 65, 257–273), and analysis has been based on a joint survival function of two event times over the positive quadrant but with observation restricted to the upper wedge. Implicitly, this approach entertains the idea of latent failure times and leads to discussion of a marginal distribution of the nonterminal event that is not grounded in reality. We argue that, similar to models for competing risks, latent failure times should generally be avoided in modeling such data. We note that semicompeting risks have more classically been described as an illness–death model and this formulation avoids any reference to latent times. We consider an illness–death model with shared frailty, which in its most restrictive form is identical to the semicompeting risks model that has been proposed and analyzed, but that allows for many generalizations and the simple incorporation of covariates. Nonparametric maximum likelihood estimation is used for inference and resulting estimates for the correlation parameter are compared with other proposed approaches. Asymptotic properties, simulations studies, and application to a randomized clinical trial in nasopharyngeal cancer evaluate and illustrate the methods. A simple and fast algorithm is developed for its numerical implementation.  相似文献   

17.
Large observational databases derived from disease registries and retrospective cohort studies have proven very useful for the study of health services utilization. However, the use of large databases may introduce computational difficulties, particularly when the event of interest is recurrent. In such settings, grouping the recurrent event data into prespecified intervals leads to a flexible event rate model and a data reduction that remedies the computational issues. We propose a possibly stratified marginal proportional rates model with a piecewise-constant baseline event rate for recurrent event data. Both the absence and the presence of a terminal event are considered. Large-sample distributions are derived for the proposed estimators. Simulation studies are conducted under various data configurations, including settings in which the model is misspecified. Guidelines for interval selection are provided and assessed using numerical studies. We then show that the proposed procedures can be carried out using standard statistical software (e.g., SAS, R). An application based on national hospitalization data for end-stage renal disease patients is provided.  相似文献   

18.
Recurrent event data are widely encountered in clinical and observational studies. Most methods for recurrent events treat the outcome as a point process and, as such, neglect any associated event duration. This generally leads to a less informative and potentially biased analysis. We propose a joint model for the recurrent event rate (of incidence) and duration. The two processes are linked through a bivariate normal frailty. For example, when the event is hospitalization, we can treat the time to admission and length-of-stay as two alternating recurrent events. In our method, the regression parameters are estimated through a penalized partial likelihood, and the variance-covariance matrix of the frailty is estimated through a recursive estimating formula. Moreover, we develop a likelihood ratio test to assess the dependence between the incidence and duration processes. Simulation results demonstrate that our method provides accurate parameter estimation, with a relatively fast computation time. We illustrate the methods through an analysis of hospitalizations among end-stage renal disease patients.  相似文献   

19.
This article presents semiparametric joint models to analyze longitudinal data with recurrent events (e.g. multiple tumors, repeated hospital admissions) and a terminal event such as death. A broad class of transformation models for the cumulative intensity of the recurrent events and the cumulative hazard of the terminal event is considered, which includes the proportional hazards model and the proportional odds model as special cases. We propose to estimate all the parameters using the nonparametric maximum likelihood estimators (NPMLE). We provide the simple and efficient EM algorithms to implement the proposed inference procedure. Asymptotic properties of the estimators are shown to be asymptotically normal and semiparametrically efficient. Finally, we evaluate the performance of the method through extensive simulation studies and a real-data application.  相似文献   

20.
Wang CN  Little R  Nan B  Harlow SD 《Biometrics》2011,67(4):1573-1582
We propose a regression-based hot-deck multiple imputation method for gaps of missing data in longitudinal studies, where subjects experience a recurrent event process and a terminal event. Examples are repeated asthma episodes and death, or menstrual periods and menopause, as in our motivating application. Research interest concerns the onset time of a marker event, defined by the recurrent event process, or the duration from this marker event to the final event. Gaps in the recorded event history make it difficult to determine the onset time of the marker event, and hence, the duration from onset to the final event. Simple approaches such as jumping gap times or dropping cases with gaps have obvious limitations. We propose a procedure for imputing information in the gaps by substituting information in the gap from a matched individual with a completely recorded history in the corresponding interval. Predictive mean matching is used to incorporate information on longitudinal characteristics of the repeated process and the final event time. Multiple imputation is used to propagate imputation uncertainty. The procedure is applied to an important data set for assessing the timing and duration of the menopausal transition. The performance of the proposed method is assessed by a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号