首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The incorporation of [methyl-H]thymidine into three macromolecular fractions, designated as DNA, RNA, and protein, by bacteria from Hartbeespoort Dam, South Africa, was measured over 1 year by acid-base hydrolysis procedures. Samples were collected at 10 m, which was at least 5 m beneath the euphotic zone. On four occasions, samples were concurrently collected at the surface. Approximately 80% of the label was incorporated into bacterial DNA in surface samples. At 10 m, total incorporation of label into bacterial macromolecules was correlated to bacterial utilization of glucose (r = 0.913, n = 13, P < 0.001). The labeling of DNA, which ranged between 0 and 78% of total macromolecule incorporation, was inversely related to glucose uptake (r = -0.823), total thymidine incorporation (r = -0.737), and euphotic zone algal production (r = -0.732, n = 13, P < 0.005). With decreased DNA labeling, increasing proportions of label were found in the RNA fraction and proteins. Enzymatic digestion followed by chromatographic separation of macromolecule fragments indicated that DNA and proteins were labeled while RNA was not. The RNA fraction may represent labeled lipids or other macromolecules or both. The data demonstrated a close coupling between phytoplankton production and heterotrophic bacterial activity in this hypertrophic lake but also confirmed the need for the routine extraction and purification of DNA during [methyl-H]thymidine studies of aquatic bacterial production.  相似文献   

2.
The effect of 5-fluoro-2′-deoxyuridine (FdUrd) on [methyl-3H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-3H]thymidine or [6-3H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [3H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [3H]thymidine labeling of protein and RNA, but caused some inhibition of [3H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [3H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [3H]thymidine incorporation.  相似文献   

3.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

4.
The use of radiolabeled nucleosides and nucleic acid bases to estimate the rates of RNA and DNA synthesis in naturally occurring microbial assemblages requires numerous assumptions, several of which are evaluated herein. Comparative time series analyses of the uptake and incorporation, labeling specificity, and extent of catabolism of [2-3H]adenine, [methyl-3H]thymidine, and [5-3H]uridine were performed with pure bacterial and algal cultures, as well as with environmental samples. [3H]thymidine yielded the most variable results, especially with regard to the extent of nonspecific macromolecular labeling. The pathways of [3H]thymidine and [3H]adenine metabolism were further evaluated by isotope dilution methods and by comparing incorporation patterns of thymidine labeled at different sites of the molecule. The advantages, uncertainties, and limitations of the use of radiolabeled nucleic acid precursors in studies of aquatic microbial ecology are discussed and a prospectus for future studies presented.  相似文献   

5.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

6.
The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. All microbial assemblages tested exhibited significant labeling of RNA and protein (i.e., nonspecific labeling), as determined by differential acid-base hydrolysis. Nonspecific labeling was greatest in sediment samples, for which ≥95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. Four different RNA hydrolysis reagents (KOH, NaOH, piperidine, and enzymes) solubilized tritium from cold trichloroacetic acid precipitates. High-pressure liquid chromatography separation of piperidine hydrolysates followed by measurement of isolated monophosphates confirmed the labeling of RNA and indicated that tritium was recovered primarily in CMP and AMP residues. We also evaluated the specificity of [2-3H]adenine incorporation into adenylate residues in both RNA and DNA in parallel with the [3H]thymidine experiments and compared the degree of nonspecific labeling by [3H]adenine with that derived from [3H]thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products by high-pressure liquid chromatography separation of the cell-free medium. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.  相似文献   

7.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

8.
Production of dissolved macromolecules by ambient autotrophic and heterotrophic microbial populations was measured in a eutrophic Florida reservoir by in situ labeling with various radioactive substrates. When [3H]thymidine was used as the precursor, production of labeled dissolved DNA, RNA, and protein was observed. The rate of production of labeled dissolved macromolecules was 3.1% the rate of cellular incorporation of [3H]thymidine, and the production of dissolved DNA represented 2.3% the rate of cellular DNA incorporation. Microautotrophic populations labeled with NaH[14C]CO3 produced dissolved RNA and protein at rates of 0.24 and 0.11 micrograms of C/liter per h, respectively, or 1.8% the total rate of carbon fixation, with no measurable dissolved DNA production. In an attempt to specifically label phytoplankton DNA, samples were incubated with [3H]adenine or 32Pi in the presence and absence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Although DCMU inhibited 14C fixation by approximately 99%, this antimetabolite had only a slight effect on [3H]adenine incorporation and no effect on 32P incorporation into cellular macromolecules. Significant amounts of dissolved DNA were produced in both [3H]adenine and 32Pi incubations, but again DCMU had no effect on the production rates. These results indicate that actively growing populations of both phytoplankton and bacterioplankton produced dissolved RNA and protein, while only active bacterioplankton produced measurable quantities of dissolved DNA. Dead or senescent phytoplankton may have produced dissolved DNA, but would not be measured in the relatively short incubations used. These findings also indicate that [3H]adenine and 32Pi primarily labeled heterotrophic bacterioplankton and not phytoplankton in this environment.  相似文献   

9.
Production of dissolved macromolecules by ambient autotrophic and heterotrophic microbial populations was measured in a eutrophic Florida reservoir by in situ labeling with various radioactive substrates. When [3H]thymidine was used as the precursor, production of labeled dissolved DNA, RNA, and protein was observed. The rate of production of labeled dissolved macromolecules was 3.1% the rate of cellular incorporation of [3H]thymidine, and the production of dissolved DNA represented 2.3% the rate of cellular DNA incorporation. Microautotrophic populations labeled with NaH[14C]CO3 produced dissolved RNA and protein at rates of 0.24 and 0.11 micrograms of C/liter per h, respectively, or 1.8% the total rate of carbon fixation, with no measurable dissolved DNA production. In an attempt to specifically label phytoplankton DNA, samples were incubated with [3H]adenine or 32Pi in the presence and absence of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Although DCMU inhibited 14C fixation by approximately 99%, this antimetabolite had only a slight effect on [3H]adenine incorporation and no effect on 32P incorporation into cellular macromolecules. Significant amounts of dissolved DNA were produced in both [3H]adenine and 32Pi incubations, but again DCMU had no effect on the production rates. These results indicate that actively growing populations of both phytoplankton and bacterioplankton produced dissolved RNA and protein, while only active bacterioplankton produced measurable quantities of dissolved DNA. Dead or senescent phytoplankton may have produced dissolved DNA, but would not be measured in the relatively short incubations used. These findings also indicate that [3H]adenine and 32Pi primarily labeled heterotrophic bacterioplankton and not phytoplankton in this environment.  相似文献   

10.
Thymidine and leucine incorporation into macromolecules of soil bacteria extracted by homogenization-centrifugation were measured after size-fractionation of the bacterial suspension through different sized filters (1.0, 0.8, 0.6, 0.4 m). The specific thymidine incorporation rate was highest for the unfiltered and 1.0 m filtered suspensions (approximately 10 × 10–21 mol thymidine bacteria–1 h–1), but decreased to 1.39 × 10–21 mol bacteria–1 h–1 for bacteria passing the 0.4 m filter. The proportion of culturable bacteria (percent colony forming units/acridine orange direct counts) also decreased with bacterial cell size from 5.0% for the unfiltered bacterial suspension to 0.8% in the 0.4 µm filtrate. A strong linear correlation (r 2 = 0.995) was found between the specific thymidine incorporation rate and the proportion of culturable bacteria. Leucine incorporation gave similar results to the thymidine incorporation. No effects of cell size on the degree of isotope dilution or unspecific labeling of other macromolecules were found either for the thymidine or the leucine incorporation technique. These data indicate that small bacteria, although more numerous than larger ones, not only constitute a smaller proportion of the soil bacterial biomass than larger bacteria, but also contribute to a lesser degree to carbon transformations in soil.  相似文献   

11.
Vertical and seasonal variations in the cell number and production rate of planktonic bacteria were investigated at a pelagic site (water depth, ca. 72 m) of the north basin of Lake Biwa during April to October 1986. The [methyl-3H]thymidine uptake rate into a cold trichloroacetic acid-insoluble fraction and the frequency of dividing cells (FDCs) were measured for each sample as indices of the bacterial production rate. The seasonal data of bacterial number, thymidine uptake rate, and bacterial growth rate based on the FDCs were correlated with one another (rank correlation analysis, P < 0.05). These bacterial variables were not correlated positively with the chlorophyll a concentration. Vertically, the maxima of both bacterial number and the thymidine uptake rate were found in the euphotic zone. The direct counting of bacteria and the measurements of thymidine uptake rate combined with the size-fractionation method revealed that more than 90% of the bacterial biomass and production rate were attributed to unattached bacteria throughout the investigation period. The carbon flux estimates of bacterial production were less certain due to the variability of the conversion factor for the thymidine uptake method and that of the calibration for the FDC method, but even when the conservative range of bacterial net production rate was used (5 to 60 μg of carbon per liter per day), it can be suggested that bacterial net production in the investigated area was a significant fraction (ca. 30%) of the level of the primary production rate in the same water basin.  相似文献   

12.
Measurements of bacterial secondary production were carried out during 13 diel studies at one coastal marine station and in five lakes differing with respect to nutrient concentration and primary production. Bacterial secondary production was measured in situ every 3 to 5 h by [3H]thymidine incorporation into DNA. In some of the diel studies, these results were compared with results obtained from dark 14CO2 uptake and frequency of dividing cells. Only minor diel changes were observed. The rate of [3H]thymidine incorporation into DNA and the frequency of dividing cells varied from 23 to 194% of the diel mean. The dark CO2 uptake rate varied from 12 to 259% of the diel mean. An analysis of variance demonstrated that no specific time periods during 24 h showed significantly different production rates, supporting the idea that bacterial activities in natural assemblages are controlled by a variety of events. The best correction (r2 = 0.74) was obtained between the [3H]thymidine incorporation and frequency of dividing cells procedures from the lake water samples. The actual production rates calculated by [3H]thymidine incorporation into DNA were appreciably lower than those obtained by the frequency of dividing cells and the dark CO2 uptake techniques. Diel rates of bacterial production are discussed in relation to sampling frequency, statistical errors, and choice of method.  相似文献   

13.
Incorporation of thymidine, thymidine monophosphate (TMP), thymidine triphosphate (TTP), uridine and orotic acid into DNA, RNA and protein in Blastomyces dermatitidis and Histoplasma capsulatum was studied utilizing a specific acid hydrolysis technique developed for these fungi. Thymidine was incorporated to the greatest extent (approximately 0.5 % of added label) followed by uridine, orotic acid, TMP and TTP. In Blastomyces, uridine and orotic acid labeled primarily RNA. TMP and TTP labeled RNA, DNA and protein at nearly the same level. In Histoplasma RNA was labeled poorly by any of these precursors. TMP and TTP labeled DNA predominately and protein to a slightly lower level. Deoxyadenosine or uridine media supplements of 250 g/ml did not enhance incorporation. All precursors tested were found to be nonspecific in that RNA, DNA and protein were labeled. All data indicate that neither RNA nor DNA synthesis can be specifically measured in whole cells or acid precipitates by any of these precursors. Specific radiometric monitoring with these isotopes therefore requires the separation of these macromolecules.  相似文献   

14.
The effects of aging on in vivo DNA and RNA labeling and on RNA content in various brain regions of 4-, 12-, and 24-month-old rats were investigated. No difference in [methyl-14C]thymidine incorporation into DNA of cerebral cortex and cerebelllum during aging was observed.The ratio of RNA/DNA content significantly decreased from 4 to 24 months of age in cerebral cortex, cerebellum and striatum. RNA labeling decreased by 15% in cerebral cortex of 24-month-old animals while in the other brain areas examined (cerebellum, hippocampus, hypothalamus, brainstem, striatum) did not change during aging.In the cerebral cortex, the ratio of the specific radioactivity of microsomal RNA to that of nuclear RNA, determined by in vivo experiments, was not affected by the aging process. A significant decrease of total, poly(A)+ RNA and poly(A)- RNA content was observed in the same brain area of 24-month-old rats compared to 4-month-old ones. Moreover, densitometric and radioactivity patterns obtained by gel electrophoresis of labeled RNA after in vitro experiments (tissue slices of cerebral cortex) showed a different ribosomal RNA processing during aging. In vivo chronic treatment with CDP-choline was able to increase RNA labeling in corpus striatum of 24-month-old animals.  相似文献   

15.
The relationship between bacterial growth and incorporation of [methyl-3H]thymidine in oligotrophic lake water cultures was investigated. Prescreening, dilution, and addition of organic and inorganic nutrients were treatments used to prevent bacterivory and stimulate bacterial growth. Growth in unmanipulated samples was estimated through separate measurements of grazing losses. Both bacterial number and biovolume growth responses were measured, and incorporation of [3H]thymidine in both total macromolecules and nucleic acids was assayed. The treatments had significant effects on conversion factors used to relate thymidine incorporation to bacterial growth. Cell number-based factors ranged from 1.1 × 1018 to 38 × 1018 cells mol of total thymidine incorporation−1 and varied with treatment up to 10-fold for the same initial bacterial assemblage. In contrast, cell biovolume-based conversion factors were similar for two treatment groups across a 16-fold range of [3H]thymidine incorporation rates: 5.54 × 1017 μm3 mol of total thymidine incorporation−1 and 15.2 × 1017 μm3 mol of nucleic acid incorporation−1. Much of the variation in cell number-based conversion factors was related to changes in apparent mean cell volume of produced bacteria. Phosphorus addition stimulated [3H]thymidine incorporation more than it increased bacterial growth, which resulted in low conversion factors.  相似文献   

16.
A method for radiolabeling marine bacteria with d-[U-14C] glucose and a radiotracer method for measuring ingestion and metabolism of bacterial biomass by ciliated protozoa and other microzooplankton are presented. Problems associated with using live bacterial tracers, i.e., label retention, label recycling, tracer cell size and morphology, and intracellular distribution of label are evaluated.Bacterioplankton assemblages collected from field samples incorporated and retained label as efficiently as coastal isolates which were selected for glucose incorporation. Under grazing experimental conditions, labeled bacteria retained a high proportion of the label (hourly net loss = 1.2%). Bacterial recycling of released dissolved organic 14C (DO14C) was 0–2.2% of total 14C per h. Addition of labeled assemblages to nearshore water samples did not detectably alter mean cell size or size frequency distribution of the attendant bacterioplankton assemblages.In grazing experiments with cultured ciliates (Euplotes sp. and Uronema sp.), radioassay parameters varied as direct functions of predator and prey concentrations. Microautoradiographic analysis corroborated that 14C incorporation measured in the radioassay by filtration techniques primarily represented ingested bacterial biomass and that problems associated with attached and adsorbed labeled bacteria were minimized. Grazing experiments conducted with bacteria labeled with [U-14C]glucose yielded ingestion rates comparable to bacteria labeled with [U-14C]thymidine and additionally provided respiration and exudation rates.  相似文献   

17.
During routine [3H]thymidine incorporation measurements of environmental samples, significant amounts of radioactivity are often incorporated into macromolecules other than DNA. Although the percentage of nonspecific labeling varies both temporally and spatially, the cause(s) of these variations remain unknown. Correlations between the percent incorporated radioactivity in DNA and a variety of experimental and environmental parameters measured in the Alfia River, Crystal River, Medard Reservoir, and Bayboro Harbor were examined. The amount of radioactivity incorporated into DNA ranged from 6 to 95% ( ; n=121). Nonspecific labeling began immediately upon the addition of [3H]thymidine and was linear over time. Labeling patterns were independent of both the amount of thymidine added and cell-size fraction. A two year study of Bayboro Harbor indicated no conclusive relationship between nonspecific labeling and seasonality. The amount of radioactivity incorporated into DNA was inversely correlated with total rates of thymidine incorporation and a strong diurnal pattern was observed in the Crystal River. No consistent relationship was observed between labeling patterns and primary productivity, chlorophylla, particulate DNA, dissolved DNA, bacterial cell numbers, temperature, salinity, and dissolved organic carbon. The only relationship with dissolved inorganic nutrients (N and P) occurred in the Crystal River. In this phosphate limited river, the percent of radioactivity incorporated into DNA was positively correlated with phosphate concentrations. These results indicate that nonspecific labeling is not dependent on any one parameter but may be a function of many interacting environmental factors or a function of the specific ambient bacterial population.  相似文献   

18.
Stimulation of cellular DNA synthesis by human cytomegalovirus   总被引:39,自引:25,他引:14  
Human cytomegalovirus (CMV) is able to induce cellular DNA synthesis in both permissive (human embryonic lung) and nonpermissive (Vero) cells. The induction of cell DNA synthesis was assayed by the incorporation of [methyl-3H]thymidine into macromolecules having the buoyant density characteristics of cell DNA. The DNA synthesis induced by CMV infection appears to represent normal semiconservative replication as opposed to repair synthesis. Both strains of CMV tested were capable of inducing cell DNA synthesis. Virus exposed to heat or UV light prior to infection lost the ability to induce DNA synthesis, indicating that a virus-coded function expressed after infection is responsible for stimulation of cell DNA synthesis.  相似文献   

19.
The effect of undernutrition on the incorporation of [methyl-3H]thymidine into DNA and of 5-[3H]uridine into RNA of cerebral hemispheres, cerebellum, and brain stem was studied in vivo and in vitro in rats. The labeling of DNA from nuclei and mitochondria and of RNA from nuclei, mitochondria, microsomes, and soluble fractions, was also measured in vitro. The results demonstrate that nucleic acid synthesis is impaired and delayed during undernutrition. Specific effects were observed for the different brain regions and subcellular fractions: at 10 days nuclear and mitochondrial DNA and RNA synthesis was impaired, whereas at 30 days only the mitochondrial nucleic acid synthesis was affected.The delay of DNA and RNA labeling, caused by undernutrition, was most evident in the cerebellum, probably due to its intense cell proliferation during postnatal development. The specific sensitivity of mitochondria as compared to other subcellular fractions, may be due to the intense biogenesis and/or turnover of nucleic acids in brain mitochondria not only during postnatal development, but also in the adult animal.  相似文献   

20.
Primary and Bacterial Production in Two Dimictic Indiana Lakes   总被引:16,自引:12,他引:4       下载免费PDF全文
The relationship between primary and bacterial production in two dimictic Indiana lakes with different primary productivities was examined during the summer stratification period in 1982. Primary production rates were calculated from rates of H14CO3 incorporation by natural samples, and bacterial production was calculated from rates of [3H-methyl]thymidine incorporation by natural samples. Both vertical and seasonal distributions of bacterial production in the more productive lake (Little Crooked Lake) were strongly influenced by primary production. A lag of about 2 weeks between a burst in primary production and the subsequent response in bacterial production was observed. The vertical distribution of bacterial production in the water column of the less productive lake (Crooked Lake) was determined by the vertical distribution of primary production, but no clear relationship between seasonal maxima of primary and bacterial production in this lake was observed. High rates of bacterial production in Crooked Lake during May indicate the importance of allochthonous carbon washed in by spring rains. Bacterial production accounted for 30.6 and 31.8% of total (primary plus bacterial) production in Crooked Lake and Little Crooked Lake, respectively, from April through October. High rates of bacterial production during late September and October were observed in both lakes. Calculation of the fraction of bacterial production supported by phytoplankton excretion implies an important role for other mechanisms of supplying carbon, such as phytoplankton autolysis. Several factors affecting the calculation of bacterial production from the thymidine incorporation rates in these lakes were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号