首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Summary The antitumor effects of recombinant interleukin-2 (rIL-2) and mismatched double-stranded RNA (dsRNA) were assessed in tissue culture and in a nude mouse model. Mismatched dsRNA did not show a direct antiproliferative effect against the human malignant melanoma cell line, BRO, in tissue culture. However, treatment of the BRO cells with up to 1000 units/ml rIL-2 in culture showed a slight increase in growth rate. Combined rIL-2/mismatched dsRNA treatment also demonstrated a similar slight enhancement of growth. Nude mice bearing subcutaneous tumors were treated by intraperitoneal injection of low doses (5000–20 000 units) of rIL-2 and mismatched dsRNA (500 µg). The in vivo tumor growth was significantly inhibited by the combined treatments (P <0.05) and survival was significantly increased (P <0.05). Measurement of cytotoxicity using splenocytes from treated animals showed significant augmentation of lytic activity against natural killer(NK)-sensitive YAC-1 cells in all rIL-2/mismatched dsRNA treatment groups, compared to the individual treatments or controls (P <0.05). Cytotoxicity of the splenocytes against the NK-resistant BRO cells was also augmented in animals treated with mismatched dsRNA and the highest rIL-2 dose utilized here (P <0.01). Renal, liver, and hematological toxicity was evaluated by measurement of blood urea nitrogen, creatinine, serum asparrtate aminotransferase, and a complete blood count with differential. There were no significant differences in these parameters in any of the treatment groups. Similarly, no differences in weight of the animals was seen in any treatment group. These results indicate that the combination of low-dose rIL-2 and mismatched dsRNA can potentiate host-mediated antitumor effects, yielding increased survival, without significant toxicity.  相似文献   

2.
Summary The adoptive immunotherapy of human cancer using lymphokine-activated killer (LAK) cells in combination with high-dose systemic recombinant interleukin-2 (rIL-2) has been associated with global changes in several hematological and immunological parameters while imposing profound toxicity on patients. We have evaluated an alternative LAK cell therapy utilizing low-dose systemic rIL-2 in 27 consecutive patients with metastatic cancer. We report that the administration of systemic low-dose rIL-2 is also characterized by significant changes in immunological and hematological parameters, which are qualitatively similar to those induced by high-dose rIL-2. Low-dose systemic rIL-2, given by i.v. bolus, is cleared to baseline levels within 240 min of administration. The induction of lymphocytosis and eosinophilia, which has characterized other protocols, is also a feature of this protocol. In addition, low-dose systemic rIL-2/LAK cell immunotherapy results in increased peripheral blood mononuclear cell (PBMC) expression of T-cell activation markers such as OKIa, OKT10 and IL-2 receptor. PBMC sampled approximately 100 h after the final infusion of LAK cells demonstrated a statistically significant increase in their ability to kill natural killer (NK)-sensitive and NK-resistent cell lines such as K562 and Daudi compared to baseline values (P <.05). These data suggest that rIL-2-based immunotherapy using low-dose rIL-2 is capable of inducing quantitative hematological and immunological changes while (in combination with LAK cells) retaining the ability to mediate tumor regressionin vivo. Dr. Eberlein was a recipient of an American Cancer Society Career Development Award. This work is supported in part by NIH Grant CA-40555 and the Clinical Research Center Grant 20-9299  相似文献   

3.
To study the effect of IL-6 on the development of cytotoxic cells, we examined lymphokine-activated killer (LAK) activity generated from human nonadherent PBL. Addition of rIL-6 at the initiation of 5-day PBL cultures significantly increases LAK activity in the presence of low concentrations (between 5 and 25 u/ml) of rIL-2. RIL-6 alone induces no PBL LAK activity but at doses as low as 0.8 u/ml rIL-6 enhances LAK activity with optimal enhancement of LAK at 5.0 u/ml of rIL-6. This enhancement is independent of effects on cells growth as rIL-6 did not affect the cell recovery of PBL cultured in rIL-2. RIL-6-enhanced LAK is mediated by the same type of effector cells as those of LAK from rIL-2 alone with effector cells primarily generated from large granular CD3-negative E rosetting lymphocytes. RIL-6 does not change the time course of LAK development and pretreatment of PBL with rIL-6 has no effect on the PBL response to subsequent rIL-2 induction of LAK. Addition of rIL-6 to LAK cultures 2 hr before the cytotoxicity assay shows equal enhancement as addition at the initiation of the culture. However, rIL-6 requires the presence of both rIL-2 and another factor in the supernatant from LAK cultures in order to enhance LAK. Our results indicate that IL-6 can modulate LAK activity at a very late stage of LAK development, and that the enhancement by IL-6 is dependent on the presence of IL-2 and another soluble factor generated during rIL-2 culture.  相似文献   

4.
Summary We have shown that depletion of monocytes from human peripheral blood mononuclear cells (PBMC) byl-phenylalanine methyl ester (PheOMe) enhanced lymphokine-activated killer cell (LAK) generation by recombinant interleukin-2 (rIL-2) at high cell density. In this study, we have investigated the mechanism of action of PheOMe on LAK activation by using trypsin, chymotrypsin, tosylphenylalaninechloromethanol (TPCK, a chymotrypsin inhibitor), tosyl-l-lysinechloromethane (TLCK, a trypsin inhibitor), phenylalaninol (PheOH), and benzamidine. PBMC were treated with 1–5 mM PheOMe for 40 min at room temperature in combination with the various agents, washed and assessed for their effects on natural killer (NK) activity against K562 cells and monocyte depletion. The treated cells were then cultured with or without rIL-2 for 3 days. LAK cytotoxicity was assayed against51Cr-labeled K562 and Raji tumor target cells. TPCK at 10 µg/ml partially inhibited depletion of monocytes by PheOMe. TLCK did not prevent depletion of monocytes nor inhibition of NK activity induced by PheOMe. TPCK and TLCK inhibited NK activity by themselves. TPCK but not TLCK inhibited rIL-2 induction of LAK cells. On the other hand, PheOH and benzamidine (analogs of PheOMe) lacked any effect on monocyte depletion but abrogated the inhibitory effect of PheOMe on NK activity. They had no effect on rIL-2 activation of LAK activity enhanced by PheOMe. Trypsin potentiated the inhibitory effect of PheOMe on NK activity and monocyte depletion. Trypsin partially inhibited IL-2 activation of LAK activity enhanced by PheOMe. Chymotrypsin had little effect on NK activity but prevented the inhibitory effect of PheOMe on NK activity. It had little effect on monocyte depletion induced by PheOMe. PheOMe was hydrolysed by monocytes and chymotrypsin to Phe and methanol as determined by HPLC. TPCK inhibited hydrolysis of PheOMe by monocytes. Our data suggest that the effects of PheOMe on monocytes, NK cells and LAK activation involve protease activities of monocytes.  相似文献   

5.
Summary Both phytohemagglutinin-induced cytotoxicity and recombinant-interleukin-2 (rIL-2)-induced lymphokine-activated killer (LAK) activity against noncultured melanoma cells were significantly reduced when peripheral blood mononuclear cells (PBMC) from patients with metastatic melanoma were incubated in RPMI medium 1640 and 10% autologous human serum instead of 10% fetal calf serum, while serum from either healthy donors or patients with primary melanoma did not affect the level of cytotoxicity. The serum-mediated suppression was not restricted by major histocompatibility complex and was time-dependent. Addition of 10% human serum from the patients with metastatic melanoma [HS-Pt(m)] to the culture of PBMC with rIL-2 at the same time or 1 day after incubation significantly inhibited LAK activity. However, addition of 10% HS-Pt(m) 2 or 3 days after incubation did not inhibit LAK activity. Incubation of PBMC for 2 h with a high dose (104 U/ml) of rIL-2 in the presence of 10% HS-Pt(m), followed by incubation in the absence of either rIL-2 or HS-Pt(m), did not affect LAK cell activity. These results suggest that HS-Pt(m) inhibits the early stage of LAK cell differentiation, rather than the binding of rIL-2 to PBMC or a later stage in the differentiation. In contrast to PBMC, monocyte-depleted peripheral blood lymphocytes exhibited comparable levels of LAK activity when cultured with rIL-2 either in 10% fetal calf serum, 10% human serum from healthy donors or 10% HS-Pt(m). Addition of purified autologous monocytes to the culture of monocyte-depleted peripheral blood lymphocytes with rIL-2 suppressed LAK cell induction when 10% HS-Pt(m) was present. Thus serum-mediated suppression of LAK cell induction is largely dependent on the presence of monocytes, which may produce a secondary inhibitor that acts on lymphocytes. Addition of indomethacin to the culture did not reverse this monocyte-dependent serum-mediated suppression in a majority of cases, suggesting that prostaglandin E2 does not have a major role in the suppression.This work was supported in part by NIH grant RR5511-25 and grants from The Council for Tobacco Research USA Inc., The Meadows Foundation, the Erwin Zaban Melanoma Research Foundation, and the Gillson-Longenbaugh Foundation  相似文献   

6.
Summary Pretreatment of peripheral blood mononuclear cells (PBMC) with 5 mMl-phenylalanine methyl ester (PheOMe) provides an efficient means to deplete monocytes. PheOMe does not affect the number of large granular lymphocytes after the pretreatment, but does inhibit natural killer cell cytotoxicity temporarily after the pretreatment. However, depletion of monocytes by PheOMe allows lymphokine-activated killer (LAK) cell generation with recombinant interleukin-2 (rIL-2) at high cell density (> 5 × 106 cells/ml). The time of the PheOMe pretreatment is 40–60 min, though some effect could be observed within 15 min, and the pretreatment could be performed at room temperature. Pretreatment density of PBMC with 5 mM PheOMe could be achieved at cell density up to 3 × 107 cells/ml. PheOMe-pretreated cells could be activated by rIL-2 in serumless media at high cell density. Pretreatment of PBMC with 5 mM PheOMe provides an efficient means to deplete monocytes, as compared to plastic and nylonwool adherence. LAK cell generation is similar in both methods of monocyte depletion; therefore, depletion of monocytes allows, LAK cell generation at high cell density. The PheOMe procedure provides an improved and convenient process for preparing LAK cells for adoptive immunotherapy.  相似文献   

7.
The in vitro incubation of B6 splenocytes with purified, mouse rIL-4 for 4 to 5 days was sufficient to generate lymphokine-activated killer (LAK) activity. In addition, rIL-4 augmented LAK cytotoxic activity when combined with rIL-2, as measured in a 4 h 51Cr-release assay against fresh, syngeneic MCA-sarcoma (MCA-102 and MCA-105) cells. Interestingly, this augmentation was not observed against the cultured YAC-1 target. LAK generation and augmentation of cytotoxicity by rIL-4 was species-specific, because human rIL-4 (up to 20,000 U/ml) failed to elicit these effects in the mouse splenocyte cultures. When 5-day B6 LAK cells (splenocytes incubated in rIL-2 at 1000 U/ml for 5 days) were split and recultured in the combination of rIL-2 plus rIL-4 for 4 additional days at least a twofold greater expansion in cell number resulted compared to similar cells cultured in either rIL-2 or rIL-4 alone. Moreover, LAK cells expanded in rIL-2 plus rIL-4 exhibited substantial increases in in vitro cytolytic activity (on a per cell basis) against MCA-102 and MCA-105 sarcoma cells, but not against YAC-1 targets. FACS analysis or negative selection using Lyt-2 or NK-1.1 mAb plus C revealed no differences in effector phenotype(s) of LAK cells expanded in rIL-2 alone compared to rIL-2 plus rIL-4 to account for the differences observed in both expansion and cytolytic activity by rIL-4. The majority of cells was Thy-1+, Lyt-2+, T3+, and ASGM-1+. However, a marked increase in the granule-associated serine esterase, BLT-E, was found only in LAK cells expanded in the combination of both lymphokines. Collectively, these studies show that rIL-4 has potent regulatory activities on splenic LAK generation, expansion, and cytotoxic function in the mouse.  相似文献   

8.
Summary We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/ CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.  相似文献   

9.
The generation of lymphokine-activated killer (LAK) cells in vitro has been reported to require 100-1000 units of recombinant interleukin-2 (IL2). In this study we investigated the generation of human LAK cells with low-dose IL2 (1-10 U) in combination with human tumor cell lines. A significant LAK activity was generated within 3- to 5-days culture of PBL. Among six human tumor cell lines tested, the K562 cell line had the greatest stimulating activity, and the degree of cytotoxicity was comparative to that of PBL stimulated with higher doses of IL2 alone. The origin of this LAK activity was primarily the E(-) rosetting cell population. Cocultures of E- cells with 1 U/ml IL2 plus K562 had significantly higher cytotoxicity (P less than 0.05) compared to using E+ cells. Phenotypic analysis indicated that 1 U/ml IL2 plus K562 cell stimulation enhanced CD56+ and CD16+ cells. These studies suggest that very low dosages of IL2 with stimulator tumor cells can generate LAK activity comparable to that generated with high dosages of IL2 alone.  相似文献   

10.
Summary The efficacy of recombinant interleukin-2 (rIL-2) or rIL-2 plus lymphokine-activated killer (LAK) cells in cancer therapy has been demonstrated by several groups both in experimental models in animals and clinical trials in humans, but their effects in vivo have yet to be clarified.Starting February 1988, we have treated 12 patients affected by advanced renal cancer with rIL-2 + LAK cells according to an open, non-randomized, phase II trial. Immediately before each rIL-2 infusion and during the last day of infusion, immunological tests were performed on the patients' peripheral blood mononuclear cells. During rIL-2 infusion we have observed a slight increase of the spontaneous cell proliferation and of natural killer (NK) and LAK activity; phenotypic analysis showed a significant decrease in the CD4+ T-lymphocyte subset, both in percentage and in absolute number. Conversely, before each cycle CD4+ cells increased when compared to basal values. No significant variations were observed in the CD8+ T-lymphocyte subset. Furthermore, a significant increase of the NK cells (CD3 CD56+ CD16+) was evident during rIL-2 infusion.  相似文献   

11.
Depleting monocytes from human peripheral blood mononuclear cells (PBMC) enhances the in vitro activation of lymphokine-activated killer (LAK) cells. To determine if monocytes also altered LAK-cell expansion, we evaluated two methods of depleting monocytes from PBMC: nylon wool adherence (NWA) and phenylalanine methyl ester (PME) treatment. Both methods of depleting monocytes enhanced interleukin-2 (IL-2) driven, LAK-cell expansion; LAK expansion, however, was significantly greater after depletion with NWA than after PME. LAK cytotoxicity after NWA and PME depletion was equivalent. The degree of monocyte depletion, determined by evaluating morphology and the number of Leu-M3 (CD14) positive cells, and the proliferation of Leu 19 (CD56), OKT-3 (CD3), Leu2 (CD8), and Leu 3a (CD4) positive cells was also equivalent. Exposure of IL-2 activated cells to PME did not alter their cytotoxic activity. However, sequential treatment of PBMC with NWA, then PME, or with PME and then NWA, resulted in reduced expansion. This reduction in expansion was similar to PBMC treated with PME alone. Exposure of PME-depleted cells to nylon wool or to supernatants obtained from cells adherent to nylon wool further decreased LAK expansion relative to cells treated with NWA alone. We conclude that even at relatively low cell density, human monocytes markedly inhibit LAK-cell expansion in IL-2 driven PBMC cultures. Further, depletion of monocytes by NWA adherence is more effective than by treatment with PME, possibly due to subtle cellular damage induced by this latter treatment. These findings have implication for the in vitro and in vivo generation of LAK-cells by IL-2.  相似文献   

12.
Summary Incubation of human lymphocytes with recombinant interleukin-2 (rIL-2) results in the generation of lymphokine-activated killer (LAK) cells capable of lysing a wide variety of tumor cells. The present study was undertaken to examine the effect of recombinant interferon (rIFN-) on LAK cell cytotoxicity generated from different peripheral blood mononuclear cell (PBMC) subpopulations. When unseparated PBMC were stimulated by rIL-2 and rIFN-, the latter induced a transient enhancement after 2 days followed by a suppression of LAK cell cytotoxicity at day 6. Enhancement of LAK cell cytotoxicity was moderate and inconstant, whereas the inhibition was strong and observed with all the donors tested. This suppression was not associated with a decrease in the [3H]thymidine uptake. PBMC depleted of adherent cells were more sensitive to the stimulation by rIL-2 and the induced cytotoxicity was not modified by rIFN-. Monocyte-enriched plastic-adherent cells, when incubated with rIL-2 and rIFN-, became cytotoxic after 2–3 days of culture and inhibited LAK cell activity after 5–6 days. Collectively, our results suggest that rIFN- affects LAK cell cytotoxicity through the activation of plastic-adherent, monocyte-rich, cells which modulate natural killer cells, first in a positive, then in a negative way.  相似文献   

13.
We have generated lymphokine-activated killer (LAK) cells from human thymocytes in order to assess the relationship between LAK cells and T cells. Fresh thymocytes lack natural cytotoxic activity, and cytotoxicity cannot be stimulated by short term (1 hr) incubation with interferon or recombinant interleukin 2 (rIL-2). In addition, thymocytes are phenotypically devoid of cells bearing the natural killer (NK)-associated markers cluster designation (CD) 16 and NKH-1. After culture for 5 to 8 days with rIL-2, thymocytes display high levels of cytotoxic activity against both NK-sensitive and NK-resistant targets. Thymocytes require slightly more IL-2 than do peripheral blood lymphocytes to generate LAK activity. We have examined the phenotype of the thymocyte LAK precursor and effector cells. Thymocyte LAK precursors are of low to medium density, CD1-negative, and predominantly CD3-negative. Although CD3-positive cells proliferate in response to rIL-2, they are low in cytolytic capabilities. The effector cells, like the LAK precursors, are low to medium density lymphocytes. The cytotoxic cells are predominantly CD3-negative, and cytotoxic activity cannot be blocked with the use of anti-CD3 monoclonal antibodies. The effector cells also lack most NK-associated markers (HNK-1, and the CD16 markers Leu-11b and B73.1) but possess the NK-associated marker NKH-1 (N901). The responsive cell appears to be at a very early stage of thymic development, and it does not appear to either require or express the CD3-T cell receptor complex.  相似文献   

14.
In order to select the most cytotoxic effector cells for adoptive immunotherapy, lymphokine activated killer (LAK) cells, tumor infiltrating lymphocytes (TILs) and autologous mixed lymphocyte tumor cell culture (MLTC) cells derived from peripheral blood mononuclear cells (PBMC) in the same subject with head and neck carcinomas were prepared. The autologous tumor cell killing activity and cell surface phenotypes of each of the three effector cells were studied. MLTC cells cultured with interleukin-2 (IL-2) showed the strongest cytotoxic activity among these three different effector cells. Although TILs had suppressed killing activity immediately after isolation, after successive cultivations with IL-2, a cytotoxic activity against autologous tumor cells stronger than that of LAK cells appeared. Both IL-2 stimulated MLTC cells and TILs showed an enrichment of CD8 positive and CDU negative cells in a CD3 positive subpopulation.Abbreviations CD cluster differentiation - IL-2 interleukin-2 - LA lymphokine activated - LAK lymphokine activated killer - MLTC mixed lymphocyte tumor cell culture - NK natural killer - PBMC peripheral blood mononuclear cells - TILs tumor infiltrating lymphocytes  相似文献   

15.
Effects of a streptococcal preparation, OK-432, on precursors of lymphokine-activated killer (LAK) cells were observedin vivo. Total number of splenocytes and the ratio of asGM 1 + cells increased gradually after i.v. administration of OK-432, reaching their peaks at 3 to 4 days. It was found that as GM 1 + cells were nonadherent and large in size. There were little differences in the ratios of Thy-1+, Lyt-2+, and L3T4+ cells before and after OK-432 treatment. Mice were injected i.p. with recombinant interleukin 2 (rIL-2) at a dose of 5 × 104 U per mouse 4 days after OK-432 administration and LAK activity in their splenocytes was examined using natural killer (NK) resistant EL-4 target cells. Splenocytes in mice treated with both OK-432 and rIL-2 showed higher LAK activity than those in mice treated with rIL-2 alone.In vivo treatment with anti asGM, antibody prior to rIL-2 injection abolished completely such augmentation of LAK activity in OK-432 treated mice. These results demonstrated that asGM 1 + LAK precursor cells induced by OK-432 were effectively differentiated into LAK cells by rIL-2.  相似文献   

16.
Peripheral blood mononuclear cells (PBMC) irradiated with high dose gamma-radiation (1000-5000 rad) are commonly used as feeder cells during the cloning of T lymphocytes, natural killer (NK) and lymphokine activated killer (LAK) cells. We report here that such gamma-irradiated PBMC can be stimulated with interleukin 2 (IL-2) to express the ability to lyse a variety of tumor cell targets. The non-major histocompatibility complex (MHC) restricted cytotoxicity demonstrated by irradiated PBMC is, however, lower than that expressed by their non-irradiated counterparts. The numbers of viable, gamma-irradiated LAK cells are significantly increased by the addition of the mitogen, phytohemagglutinin (PHA). Purification of the gamma-irradiated cells expressing cytotoxic activity by flow cytometry determined that the effector cells were predominantly CD3- cells, although some CD3+ cells also expressed moderate LAK activity. The ability of gamma-irradiated cells to proliferate in the presence of PHA alone, or with IL-2 + PHA, was maximal at day 4-5; but proliferation, as detected by 3H-thymidine uptake, was not detectable beyond 12-15 days of in vitro culture. Because many of the LAK, T cell and NK cell cloning procedures require the presence of feeder layers, growth factors (usually IL-2) and mitogens, the presence of residual feeder cells expressing cytotoxic activity may affect the specificity of such clones. Thus, efforts should be made to ensure that such gamma-radiation-resistant cells capable of expressing cytotoxic activity are completely eliminated before the cloned cells are used for further experiments.  相似文献   

17.
Peripheral blood lymphocytes (PBL) of gastric cancer patients in advanced stages showed lymphokine activated killer (LAK) activities comparable to those of healthy donors, suggesting potential applicability of LAK cells induced from PBL stimulated with recombinant interleukin-2 (rIL-2) in adoptive immunotherapy (AIT) for gastric cancer. In order to generate a large number of LAK cells from PBL, lymphocytes were cultured with both rIL-2 and phytohemagglutinin (PHA). In this culture, the numbers of cells increased to a greater extent than those in culture with rIL-2 alone but cytotoxic activity did not augment, thus suggesting that this procedure would not afford sufficient clinical effects. On the other hand, a large number of LAK cells with high anti-tumor activities were efficiently induced from spleen cells of the patients by culture of rIL-2; hence clinical usefulness of these LAK cells is anticipated. In regional lymph node lymphocytes (RLNL) cultured with rIL-2, the cytotoxic activities were lower than in those induced in PBL, and a characteristic increase of CD8 + CD11 + suppressor T cells was observed after incubation with rIL-2. Nevertheless, an increase of CD4 + 4B4+ helper inducer T cells was also observed in RLNL after the culture with rIL-2. Furthermore, high cytotoxic activities were induced in RLNL in some cases in which metastasis to the regional lymph nodes was not detected. When gastric cancer patients were pretreated with biological response modifiers (BRM), especially with Lentinan, LAK cells from PBL showed higher NK and LAK activities as compared with those of patients without BRM pretreatment.This work was partly supported by a grant from Hokkoku Cancer Research Foundation.  相似文献   

18.
Human thymocytes are devoid of NK cells but develop lymphokine-activated killer (LAK) activity after culture with recombinant interleukin-2 (rIL-2). The most active precursor for this activity appears to be a CD3-negative cell. The purpose of these studies was to compare the phenotype and functional activities of thymocyte and peripheral blood lymphocyte (PBL) LAK cells. Following culture, rIL-2-activated thymocytes resemble PBL-generated LAk and PBL NK cells. For each of these populations, lytic activity is highest in NKH-1-positive cells. Two-color fluorescence of each population also indicates that NKH-1+ cells are highly granular, as measured by staining with the lysosomotropic vital dye quinacrine. PBL, PBL-derived LAK cells, and thymus-derived LAK cells have a portion of cells that express both CD3 and NKH-1. However, approximately 60-80% of NKH-1+ cells lack detectable CD3. This suggests that both CD3+ and CD3- cells may be capable of LAK activity. Thymic-derived LAK cells respond to interferon in a manner very similar to NK and PBL-derived LAK cells, but lack the NK-associated CD16 antigen. Thus, despite the absence of NK cells in the thymus, it is possible to generate thymocyte LAK activity which bears a strong resemblance to LAK activity derived from peripheral blood lymphocytes.  相似文献   

19.
IL-4 is a pluripotent lymphokine acting on various cell types. We investigated the role of human IL-4 on the generation of lymphokine-activated killer (LAK) activity. Human IL-4 alone did not induce LAK activity and inhibited IL-2 induction of LAK activity from unstimulated PBMC, peripheral blood null cells, spleen cells, and lymph node cells in a dose-dependent manner. IL-4 also inhibited several phenomena induced by IL-2 such as cell proliferation, augmentation of NK activity, increase of Leu-19+ cells, and expression of IL-2R(p55) on either CD3+ or Leu-19+ cells. IL-4, however, augmented cell proliferation with other T cell mitogens including PHA, Con A, PMA, or allo-MHC Ag with or without IL-2. In contrast to unstimulated cells, IL-4 alone induced marked cell proliferation and LAK activity as well as Leu-19+ cells from in vitro IL-2 preactivated PBMC or null cells, and did not inhibit IL-2 induced cell proliferation, LAK activity, Leu-19+ cells and IL-2R(p55) expression, but rather augmented them with low doses of IL-2. Although IL-4 alone induced LAK activity from peripheral blood of some patients previously given IL-2, IL-4 inhibited in vitro LAK generation with IL-2 from these cells in most cases. Therefore, IL-4 appears to directly inhibit the IL-2 activation pathway via IL-2R(p70) and prevent resting LAK precursors from proliferating and differentiating into final effector cells. However, once cells were sufficiently preactivated by IL-2, IL-4 induced LAK activity and did not inhibit IL-2 activation of these cells. These data suggest an immunoregulatory role of IL-4 on human null cells and T cells.  相似文献   

20.
The effect of indomethacin on murine lymphokine-activated killer (LAK) cell activity was investigated using a natural killer-resistant, spontaneously developed, weakly immunogenic, and highly tumorigenic syngeneic murine mammary adenocarcinoma, mimicking that of human disease, as the target. When used in combination with human recombinant interleukin-2 (rIL-2), indomethacin was found to augment LAK cell activity, which was generated from culture of the normal mouse splenocytes with rIL-2, as compared to that with rIL-2 alone. This increase in LAK cell activity was shown to be indomethacin dose-dependent, and was demonstrated only when indomethacin was added to the rIL-2-containing medium at the beginning of culture. The enhancement of LAK cell activity by indomethacin was abrogated when the nylon-wool nonadherent "macrophage-poor" splenocytes were incubated with rIL-2 plus indomethacin. These results indicated that the rIL-2-induced LAK cell activity generated from murine splenocytes could be augmented by indomethacin, and the macrophages may be involved as the mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号